2014/12/1 Mon.

問題解決技法入門

Rでデータの視覚化

Rでデータの視覚化

• csv ファイルをデータとして利用

- 「マイドキュメント(Y:)」に「R」フォルダをつくり中に保存

		A	В	С	D	E	F	G	Н	Ι	J	K	L	M
bb2015.csv	1		リーグ	試合数	勝数	負数	引分数	勝率	得点	失点	本塁打	盗塁	打率	防御率
	2	巨人	セ	144	82	61	1	0.573	596	552	144	102	0.257	3.58
	3	阪神	セ	144	75	68	1	0.524	599	614	94	55	0.264	3.88
	4	広島	セ	144	74	68	2	0.521	649	610	153	96	0.272	3.79
	5	中日	セ	144	67	73	4	0.479	570	590	87	75	0.258	3.69
	6	DeNA	セ	144	67	75	2	0.472	568	624	121	76	0.253	3.76
	7	ヤクルト	セ	144	60	81	3	0.426	667	717	139	62	0.279	4.62
	8	ソフトバンク	バー	144	78	60	6	0.565	607	522	95	124	0.28	3.25
	9	オリックス	バー	144	80	62	2	0.563	584	468	110	126	0.258	2.89
	10	日本ハム	バー	144	73	68	3	0.518	593	569	119	134	0.251	3.61
	11	ロッテ	バー	144	66	76	2	0.465	556	642	96	64	0.251	4.14
	12	西武	バー	144	63	- 77	4	0.45	574	600	125	74	0.248	3.77
	13	楽天	バー	144	64	80	0	0.444	549	604	78	64	0.255	3.97

• ファイルの読込み

※)2015年プロ野球セ・パ成績 (Yahoo Japan! Sports naviより)

Rでデータの視覚化

 棒グラフを作成 ^{※色指定用のベクトル生成}. "royalblue"を6回 repeat し, "violetred"を6回 repeat したベクトルをつくり cc に代入

> cc <- c(rep("royalblue",6), rep("violetred",6)) > barplot(dfbb[,3], names.arg=row.names(dfbb), col=cc, xlab="チー ム名", ylab="勝数")

dfbb[,3] ... data.frameである dfbb の3列目 ("勝数")を棒グラフのデータとして使用 names.arg ... それぞれの棒に対応する名称

col ... 棒の色指定 xlab ... x軸のラベル ylab ... y軸のラベル

 Tips !
 > colors()
 ※Rで使える657色 の名称リスト表示

Rでデータの視覚化

箱ひげ図を描画

> boxplot(dfbb[,9], col="tomato")

dfbb[,9] ... data.frameである dfbb の9列目("本塁打")を箱ひげ図のデータとして使用

Rでデータの視覚化

散布図を作成(1)

> plot(dfbb[,6], dfbb[,12], xlab="勝率", ylab="防御率", col="purple")

x軸を dfbb[,6]="勝率" y軸を dfbb[,12]="防御率" のデータを用い散布図を作成

xlab ... x軸ラベルの指定 ylab ... y軸ラベルの指定 col ... プロットする点の色指定

Rでデータの視覚化

散布図を作成(2)

> plot(dfbb[,6], dfbb[,12], xlab="勝率", ylab="防御率", type="b")

Rでデータの視覚化

散布図を作成(4)

※プロットはせずに、枠・軸だけを描画

> plot(dfbb[,6], dfbb[,12], xlab="勝率", ylab="防御率", type="n") > text(dfbb[,6], dfbb[,12], row.names(dfbb))

R R Graphics: Device 2 (ACTIVE)

※チーム名称をプロット点としてかく (read.csvでcsvファイルを読み込んだ時 に, row.namesとして1列目のチーム名称 を指定したことを思いだそう!)

 ・箱ひげ図と散布図を作成(1)-scatterplot()

> install.packages("car") > library(car)
Scatterplot()の使用準備
package "car"のインストール
package "car"の読込み

> scatterplot(dfbb[,4], dfbb[,8], xlab="負数", ylab="失点")

- 箱ひげ図と散布図を作成(2)-scatterplot()-
 - > install.packages("sp")
 - > install.packages("maptools")
 - > library(sp)
 - > library(maptools)

※pointLabel()の使用準備 - packages "sp","maptools"のインストール

_ packages "sp", "maptools"の読込み (注 : 必ず sp → maptools の順!)

> scatterplot(dfbb[,4], dfbb[,8], xlab="負数", ylab="失点", reg.line=F, smooth=F)

> pointLabel(x=dfbb[,4], y=dfbb[,8], labels=row.names(dfbb))

※平滑化線は描かない

※散布図の点のラベルを row.names(dfbb)として書く ※回帰直線 regression line は描かない(FはFalseの意)

Rでデータの視覚化

