意思決定科学

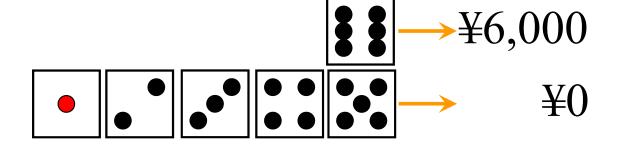
期待効用理論

堀田敬介

Contents

- <u>期待値</u>理論
 - 期待値ってナンだっけ?
 - 期待値で上手くいかないことなんてあるの?
 - ■セントペテルスブルグの逆説
- <u>期待効用</u>理論
 - ■期待効用仮説
 - ■効用関数

- ■期待値ってナンだっけ?
- ■期待値でうまくいかないコトなんてあるの?
 - ■セントペテルスブルグの逆説



例1 学園祭の目玉出し物として次のゲームを考えた 『サイコロを1回振り6が出たら6,000円ゲットだぜ!』 このゲームをいくらで売りだそう?

■ 賞金額に対する満足度が比例するならば、期待値 理論で参加費を算出しよう

$$E(X) = \sum_{i=1}^{n} p_i x_i$$

 $[x_i: 賞金額, p_i: x_i$ の生起確率]

期待値ってナンだっけ? 例を使って思いだそう

演習(期待値の計算〔宝くじの期待値〕

H21オータムジャンボ宝くじ(2009/9/28~)

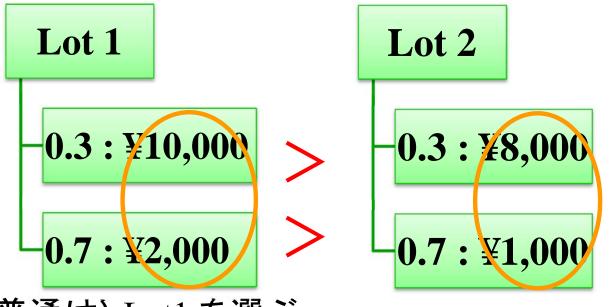
宝くじ1枚300円

その価値が あるのか?

発売枚数:1億3千万枚1千万枚辺りの当選数

等級	当せん金	本数
1等	150,000,000円	1本
1等前後賞	25,000,000円	2本
1等組違賞	100,000円	99本
2等	10,000,000円	10本
3等	1,000,000円	100本
4等	100,000円	1,000本
5等	1,000円	300,000本
6等	300円	1,000,000本
秋祭り賞	10,000円	30,000本

<mark>例2</mark>2つのくじをどちらか1回引ける. どっちがいい?

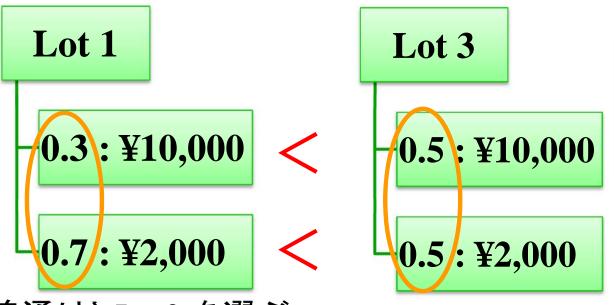


期待値理論(人は 期待値の高いくじを 選択する)で人間の 行動を上手く表現で きるね!

- (普通は) Lot1 を選ぶ.
 - 良い悪いの出る確率が同じで、Lot1の方がいずれも報酬が高い
 - 当然, 期待値を計算しても Lot1の方が良い

$$\frac{3}{10} \times 10000 + \frac{7}{10} \times 2000 = 4400 > 3100 = \frac{3}{10} \times 8000 + \frac{7}{10} \times 1000$$

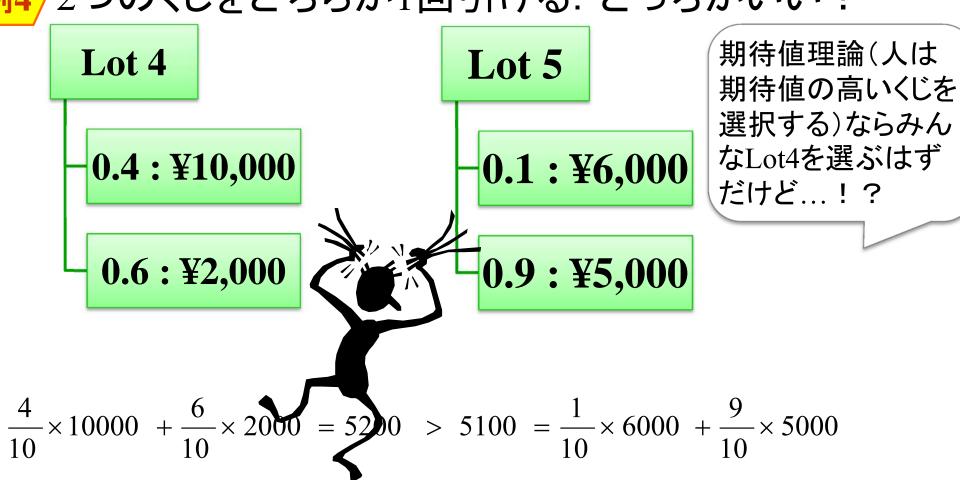
例3 2つのくじをどちらか1回引ける. どっちがいい?



期待値理論(人は 期待値の高いくじを 選択する)で人間の 行動を上手く表現で きるね!

- (普通は) Lot3 を選ぶ.
 - 結果金額が同じ、かつLot3 の方が良い結果が得られる確率が高い
 - 当然, 期待値を計算しても Lot3の方が良い

$$\frac{3}{10} \times 10000 + \frac{7}{10} \times 2000 = 4400 < 6000 = \frac{5}{10} \times 10000 + \frac{5}{10} \times 2000$$



Lot 4

Lot 5

-0.4: \(\frac{\pmathbf{Y}}{10,000}\)
-0.1: \(\frac{\pmathbf{Y}}{6,000}\)
-0.9: \(\frac{\pmathbf{Y}}{5,000}\)

例4 考察

- Lot5 を選ぼうかな...
 - Lot4 は悪い結果が出る確率が高く、その時得られる 賞金額がかなり低い!
 - Lot5 はいずれの結果でも5,000円は保証されている!

「リスク回避」型

- Lot4 を選ぼうかな...
 - 期待値を計算すると Lot4 の方が良いのだ!
 - Lot4は成功報酬が大きく魅力的だ! Lot5では良くて も6,000円しか貰えないしまりのではないしまりでは良くて

セントペテルスブルグの逆説

サイコロの出た目による賭けがある.

奇数の目が出るまでサイコロを振り、その回数が*N*の時、

2^N円貰える.

■N=1:奇数 2円貰える

⇒ 4円貰える ■N=2:偶数, 奇数

■*N*=3:偶数, 偶数, 奇数 ⇒ 8円貰える

■*N*=4:偶数, 偶数, 奇数 ⇒ 16円貰える

■N=i:偶数, ..., 偶数(i-1回), 奇数 ⇒ 2^i 円貰える

期待値はいくら?

セントペテルスブルグの逆説

サイコロの出た目による賭けがある.

■ 奇数の目が出るまでサイコロを振り、その回数がNの時、 2^N円貰える.

$$P(N=1) = \frac{1}{2}$$
 N=1:奇数

$$P(N=2) = \frac{1}{4}$$

 $P(N=2) = \frac{1}{4}$ • N=2:偶数,奇数 $P(N=3) = \frac{1}{8}$ • N=3:偶数,偶数,奇数 $P(N=4) = \frac{1}{16}$ • N=4:偶数,偶数,奇数

⇒ 16円貰える

⇒ 8円貰える 払ってでもこの 賭に参加すべ き!? 皆そうする?

$$P(N=2^i)=\frac{1}{2^i}$$
 •N=i:偶数, ..., 偶数(i-1回), 奇数 \Rightarrow 2ⁱ円貰える

■ 期待値は
$$\frac{1}{2} \times 2 + \frac{1}{4} \times 4 + \frac{1}{8} \times 8 + \dots + \frac{1}{2^i} \times 2^i + \dots = 1 + 1 + 1 + \dots + 1 + \dots$$

セントペテルスブルグの逆説

無限回やるから変なんだろう. 50回で終わりにしよう

■N=1:奇数

2円貰える

■*N*=2:偶数, 奇数

⇒ 4円貰える

■*N*=3:偶数, 偶数, 奇数

⇒ 8円貰える

■N=4:偶数, 偶数, 偶数, 奇数 ⇒ 16円貰える

N=50:偶数, ..., 偶数(i-1回), 奇数 $\Rightarrow 2^{50}$ 円貰える

■N=50:偶数, ..., 偶数(i-1回), 偶数 ⇒ 2^{50} 円貰える

ちなみに、2⁵⁰=1,125,899,906,842,620

■ 期待値は
$$\frac{1}{2} \times 2 + \frac{1}{4} \times 4 + \frac{1}{8} \times 8 + \dots + \frac{1}{2^{50}} \times 2^{50} + \frac{1}{2^{50}} \times 2^{50} = 1 + 1 + 1 + \dots + 2 = 51$$

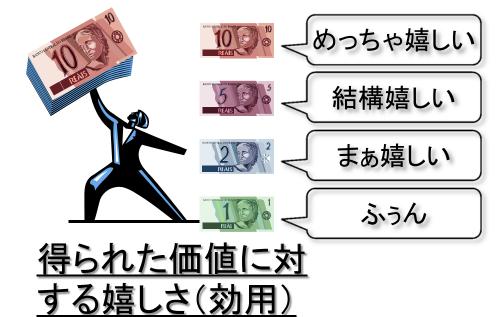
- まとめ
 - 不確実性のある意思決定問題における意思決定主体の評価基準は、期待値は適当ではない

意思決定主体の主観にもとづく効用関数を使おう

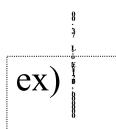
- ■期待効用仮説 expected utility hypothesis
- 効用関数 utility function

- ■期待効用理論
 - 期待値ではなく期待効用を使うことにしてみよう

価値そのもの



価値を使って考える(<u>期待値</u>)のではなく、得られた価値に対する嬉しさを使って考えよう(<u>期待効用</u>)



■ 期待効用仮説

意思決定主体は複数のくじ

$$z = [x_1, \dots, x_n; p_1, \dots, p_n]$$

z = [10000, 2000; 0.3, 0.7]

の選択において, 期待効用

$$\sum_{i=1}^{n} p_{i} u(x_{i})$$

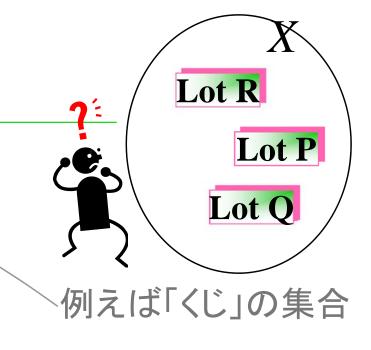
$$\left(\longrightarrow \sum_{i=1}^n p_i x_i$$
期待值

を最大にするくじを選択する.

貨幣額 x_i に対する効用

- (1) 意思決定主体のくじに対する選好順序がどのような性質を満たせば、期待効用仮説が成立するか?
- (2) 期待効用仮説が成立するとき、意思決定主体の効用関数 u(x) はどのような性質をもつか?

- 選好順序 preference order
 - 2項関係 ➤ を集合 X 上の選好順序という
 - 例) P≻Q: PはQよりも好まれる



- 弱順序 weak order
 - \blacksquare 集合 X 上の2項関係 \searrow が弱順序であるとは、以下が成立すること

反対称性 antisymmetric

■ $P,Q \in X$ に対し、 $P \succ Q$ ならば、 $P \prec Q$ ではない.

負推移性 negatively transitive

- $P,Q,R \in X$ に対して, $P \succ Q$ でなく, かつ $Q \succ R$ でなければ, $P \succ R$ でない.
- 集合 X 上の弱順序 > に対して, X 上の2項関係 ~ , ≥ を以下に定める.
 - **P**, $Q \in X$ に対し, $P \sim Q$ は, $P \succ Q$ でなく, かつ $P \prec Q$ でないこと.
 - $P,Q \in X$ に対し、 $P \succeq Q$ は、 $P \succeq Q$ または $P \sim Q$ のこと.

無差別 indifference

弱選好 weak preference

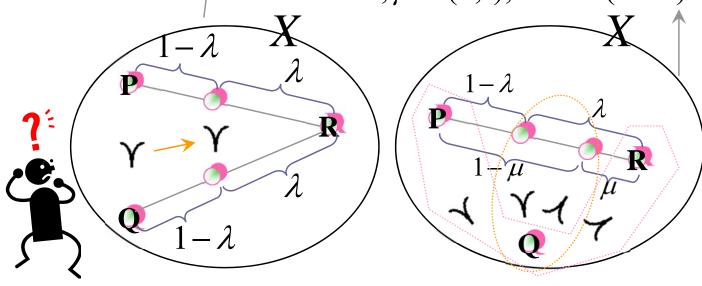
合理的な意思決定主体が もつ選好関係は少なくとも 弱順序

- 集合 X 上の選好順序 > に関する3つの公理
 - 公理1〔合理性〕 > は X 上の弱順序である
 - 公理2[独立性] $P \succ Q$ ならば \uparrow $\forall 2 = (0.1) \rightarrow 2P + (1...2) P > 2$

$$\forall \lambda \in (0,1), \quad \lambda P + (1-\lambda)R > \lambda Q + (1-\lambda)R$$

• 公理3[連続性] $P \succ Q, Q \succ R$ ならば,

$$\exists \lambda, \mu \in (0,1), \quad \lambda P + (1-\lambda)R \succ Q \succ \mu P + (1-\mu)R$$



意思決定主体の選好順序が上記3つの公理を満たせば、期待効用仮説が成立する.

P:キリマンジャロ

Q:モカ

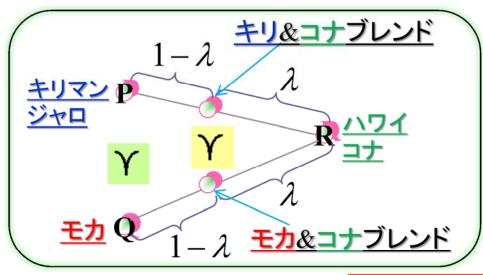
R:ハワイコナ

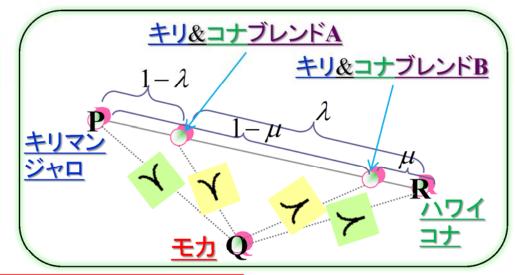
■ 例:珈琲の選好

$$\begin{cases} P \succ Q & \text{なら } P \prec Q & \text{でない} \\ P \succ Q & \text{でなく} Q \succ R & \text{でないなら} P \succ R & \text{でない} \end{cases}$$

- 公理1〔合理性〕弱順序(反対称性,負推移性)
- 公理2[独立性] $P \succ Q$ なら $\forall \lambda \in (0,1), \quad \lambda P + (1-\lambda)R \succ \lambda Q + (1-\lambda)R$
- 公理3[連続性] P≻Q,Q≻R なら

$$\exists \lambda, \mu \in (0,1), \quad \lambda P + (1-\lambda)R \succ Q \succ \mu P + (1-\mu)R$$

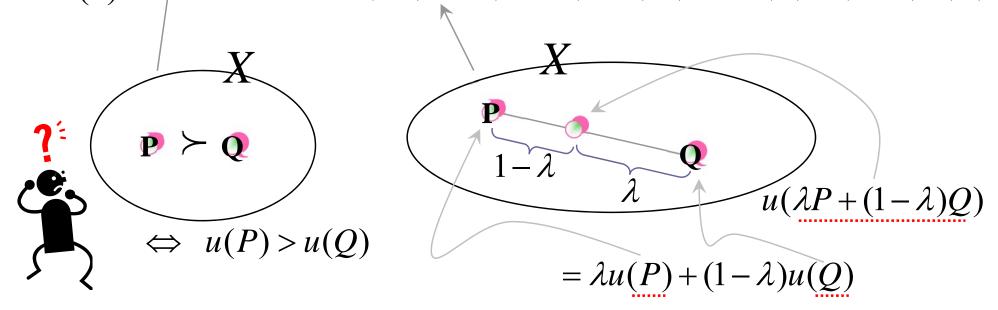




表現定理

公理1~3が成り立つため の必要十分条件は,以下 の(1),(2)が成り立つこと.

- フォン・ノイマン=モルゲンシュテルン効用関数
 - 以下の2つを満たす実数値関数 u を, 選好順序 > に関するフォン・ノイマンニモルゲンシュテルン効用関数という.
 - (1) $\forall P, Q \in X$, $P \succ Q \iff u(P) > u(Q)$
 - (2) $\forall P, Q \in X, \forall \lambda \in (0,1), \quad u(\lambda P + (1-\lambda)Q) = \lambda u(P) + (1-\lambda)u(Q)$



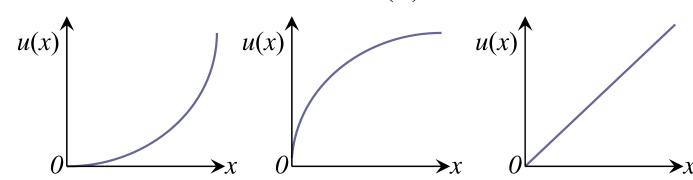
- フォン・ノイマン=モルゲンシュテルン効用関数の一意性
 - 以下の2つを満たす実数値関数 u は, 正一次変換を除いて一意.
 - (1) $\forall P, Q \in X$, $P \succ Q \iff u(P) > u(Q)$
 - (2) $\forall P, Q \in X, \forall \lambda \in (0,1), \quad u(\lambda P + (1-\lambda)Q) = \lambda u(P) + (1-\lambda)u(Q)$

 $u(P_0)=0$ を満たす P_0 と、 $u(P_1)=1$ を満たす P_1 を定めれば、一意に決定する.

■ リスク回避度

- *X* 上の関数 *u(X)* が,

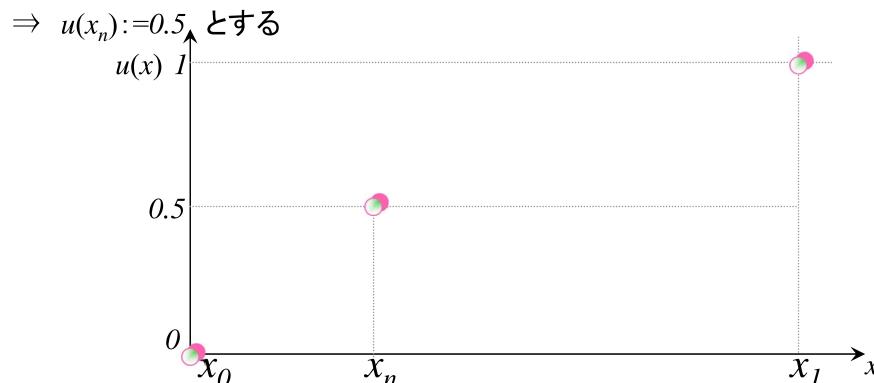
 - $\stackrel{\square}{\longrightarrow} \forall P, Q \in X, \forall \lambda \in (0,1), \quad u(\lambda P + (1-\lambda)Q) \ge \lambda u(P) + (1-\lambda)u(Q)$
 - affine $\xrightarrow{\Delta} \forall P, Q \in X, \forall \lambda \in (0,1), \quad u(\lambda P + (1-\lambda)Q) = \lambda u(P) + (1-\lambda)u(Q)$
- 効用関数 *u(X)* が,
 - リスク愛好的(risk-loving) $\Leftrightarrow u(X)$ が凸
 - リスク回避的(risk-averse) ⇔ u(X) が凹
 - リスク中立的(risk-neutral) ⇔ u(X) がaffine



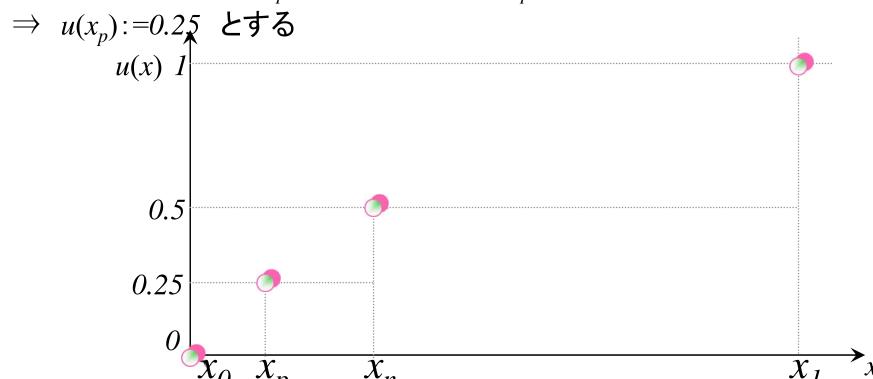
- 効用関数 u(x) の求め方の一例
 - [step0] 最低の満足度を 0, 最高の満足度を 1 とする
 - $u(x_0)$:=0, x_0 で最低の満足度(効用) 0 が得られる
 - *u*(*x*₁):=1, *x*₁で最高の満足度(効用) 1 が得られる



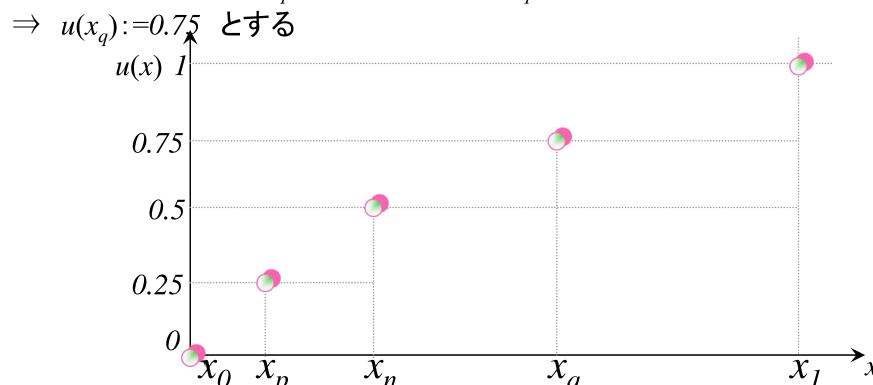
- [step1] 以下のくじ I , II を考える. どちらでも満足度が同じになる *x_n*を決める
 - くじ I:確率 1/2 で x₀,確率 1/2 で x₁ が得られる
 - くじ Π : 確率 1で x_n が得られる $(x_0 < x_n < x_1)$



- [step2]以下のくじIII, IVを考える。 どちらでも満足度が同じになる x_p を決める
 - くじIII: 確率 1/2 で x_0 , 確率 1/2 で x_n が得られる
 - くじ \mathbb{N} : 確率 1で x_p が得られる $(x_0 < x_p < x_n)$



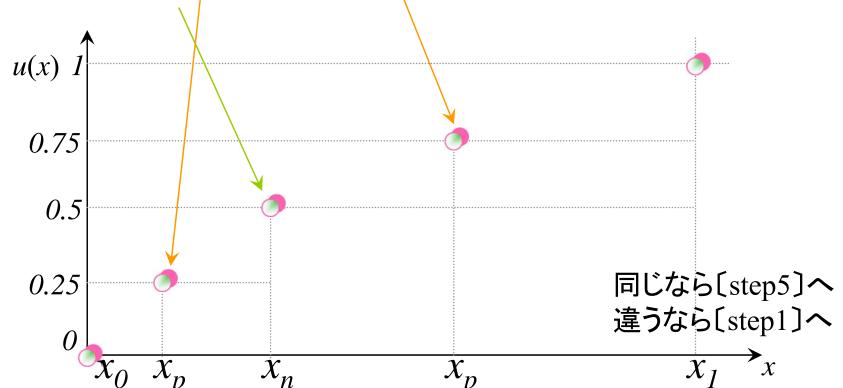
- - くじV:確率 1/2 で x_n,確率 1/2 で x₁ が得られる
 - くじVI: 確率 1で x_q が得られる $(x_n < x_q < x_I)$

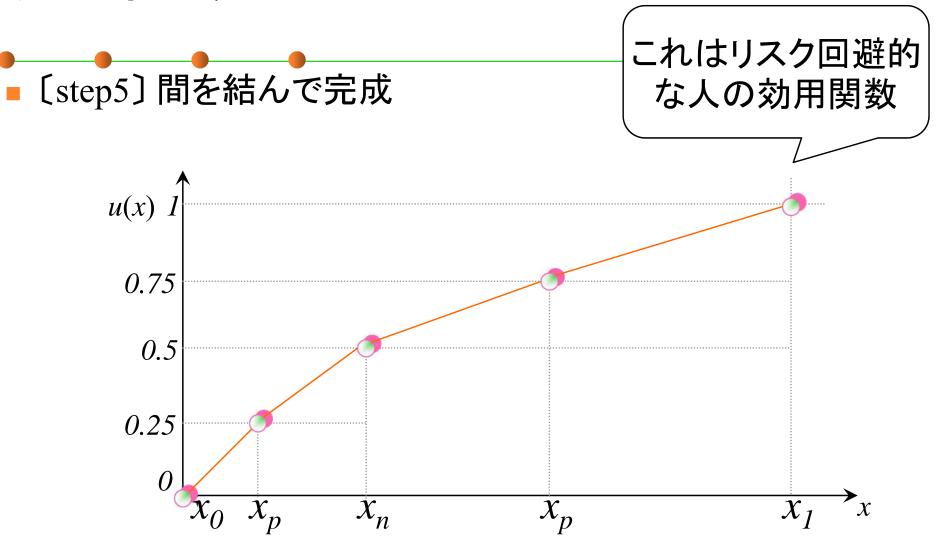


■ [step4:検証] 以下のくじⅥ, Ⅶを考える. どちらでも満足度 が同じになることを確認する.

■ くじVII: 確率 1/2 で x_p, 確率 1/2 で x_q が得られる

■ くじVIII:確率 1で x_n が得られる





効用関数の利用

<mark>例4再考</mark> どちらか1回引ける. どっちがいい?

Lot 4

0.4: \$10,000

0.6: \$2,000

Lot 5

0.1: \$6,000

0.9: \$5,000

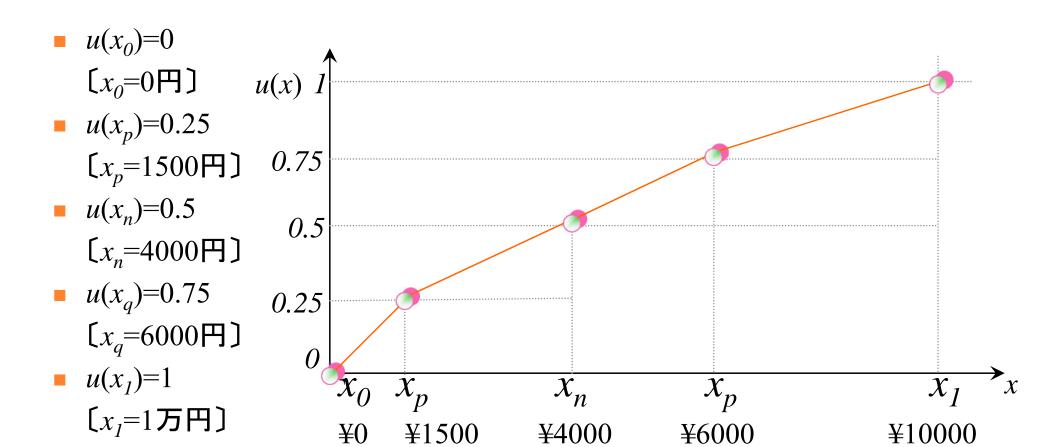
演習(各々効用関数を作成し、期待効用値 E*を求めてみよう!

$$E^* = \sum_{i=1}^n p_i u(x_i)$$

$$\begin{bmatrix} u(x_i) : 効用関数 \\ p_i : x_i$$
 の生起確率

効用関数の利用

<mark>例4再考</mark>〉効用関数による期待効用値計算例



効用関数の利用

<mark>例4再考</mark>〉効用関数による期待効用値計算例

Lot 4

0.4: \$10,000

0.6: \$2,000

対用 $\begin{cases} u(10,000) = 1.00 \\ u(6,000) = 0.75 \\ u(5,000) = 0.65 \\ u(2,000) = 0.30 \end{cases}$

Lot 5

-0.1: \$6,000

0.9: \$5,000

$$E*(Lot 4) = 0.4 \times 1.00 + 0.6 \times 0.30 = 0.58$$

 $E*(Lot5) = 0.1 \times 0.75 + 0.9 \times 0.65 = 0.66$

期待効用

この人は、Lot5を選ぶ

参考文献

- [1] 岡田章「ゲーム理論」有斐閣(1996, 2011[新版])
- [2] 木下栄蔵「わかりやすい意思決定論入門」近代科学社(1996)
- [3] 日本OR学会編「OR事典2000」(2000)
- [4] 中山弘隆·谷野哲三「多目的線形計画の理論と応用」コロナ 社(1994)
- [5] 鈴木光男「ゲーム理論入門」共立出版(1981,2003[新装版])
- [6] 木下栄蔵編「AHPの理論と実際」日科技連(2000)

《補足》

- Savageの期待効用関数([3,6]など)
 - 客観確率の代わりに主観確率を用い、期待効用仮説が成り立つ基数効用 関数と主観確率が存在するための必要十分条件を求めている。
 - cf. 基数尺度に従う基数効用関数,順序尺度に従う序数効用関数
- リスク・プレミアム ([1]など)
 - 初期資産 x におけるリスク z に対する意思決定者のリスク・プレミアム (risk premium)
- 行動経済学におけるプロスペクト理論
 - 人は, 損を得より重要視する(同じ金額なら, 得より損をより嫌がる)
 - 実際におきる確率に対し、低い確率(0%~30%)は過大評価し(より起きやすいと感じる. 実際の確率より大きい確率だと評価)、高い確率(70%~100%)は過小評価する(より起きにくいと感じる. 実際の確率より小さい確率だと評価)