Excel ソルバーではじめるOR

後藤順哉1

堀田敬介2

1中央大学

2 文教大学

2017年10月7日(土)

本セミナーの構成

- 1. 数理最適化とソルバー(後藤)
- Excel ソルバー入門(堀田)
- 3. 0-1 整数計画(堀田)
- 4. ポートフォリオ選択(後藤)
- **5. VBA** を使って便利にする(後藤)
- 6. データ包絡分析法(後藤)
- 閉会 (閉会後 個別相談・質問コーナー)

0-1整数計画 セッション3

堀田敬介

文教大学

2017年10月7日(土)

Outline

1. 0-1整数計画

2. ナップサック問題

3. 安定集合

4. 集合分割

5. 巡回セールスマン問題

1.0-1整数計画

※ここでは、目的関数・制約 とも<u>線形</u>の場合のみ考える

• 整数計画(Integer Program)

min.
$$c^t z$$

s.t. $Az \leq b$

 $z \ge 0$ $z \in Z$

min.
$$c^t z + d^t x$$

s.t. $Az + Ex \le b$
 $z, x \ge 0$
 $z \in Z, x \in R$

混合整数計画(MIP)

0-1整数計画(0-1IP)



0-1混合整数計画 (0-1MIP)

1.0-1整数計画:IPを解く

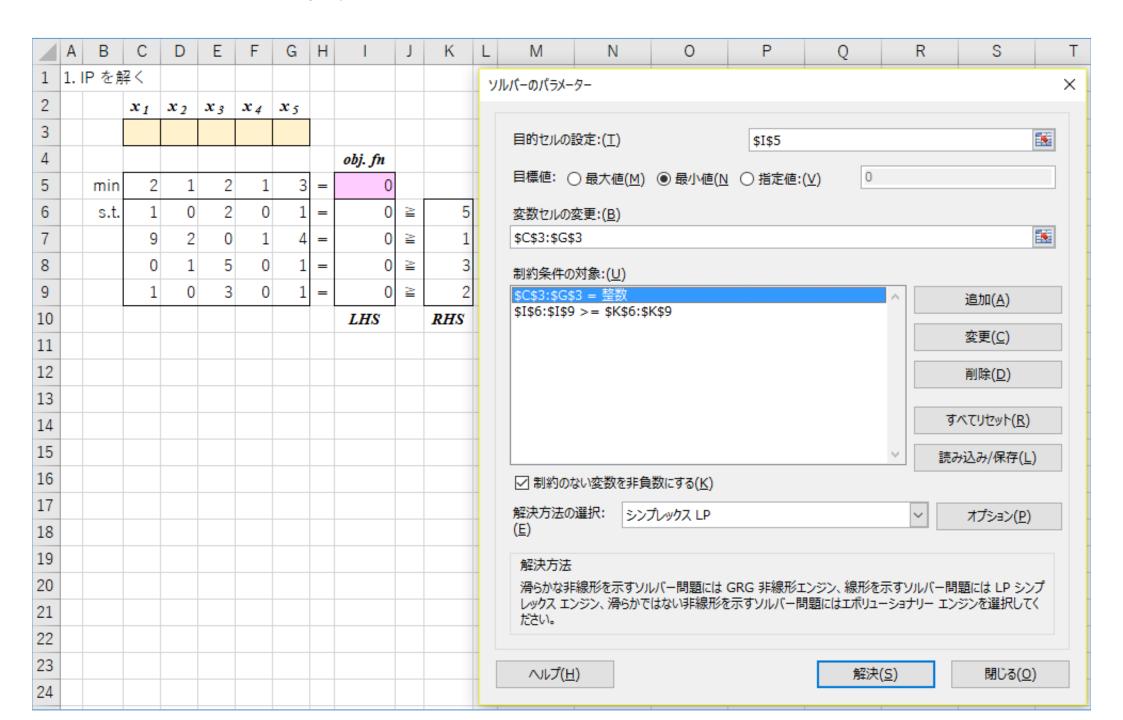
• 整数計画(Integer Program)

min.
$$2x_1 + x_2 + 2x_3 + x_4 + 3x_5$$

s.t. $x_1 + 2x_3 + x_5 \ge 5$
 $9x_1 + 2x_2 + x_4 + 4x_5 \ge 1$
 $x_2 + 5x_3 + x_5 \ge 3$
 $x_1 + 3x_3 + x_5 \ge 2$
 $x_1, x_2, x_3, x_4, x_5 \ge 0, x_1, x_2, x_3, x_4, x_5 \in Z$

	Α	В	С	D	Ε	F	G	Н	- 1	J	K	L	M	N	0	Р
1	1. 1	P を角	4 <													
2			x_1	x_2	<i>x</i> ₃	x 4	x 5									
3																
4									obj. fn				数式			
5		min	2	1	2	1	3	=	0				[I5] = SUMPRODUCT(C\$3:G\$3, C5:G5)			
6		s.t.	1	0	2	0	1	=	0	\geqq	5		1			
7			9	2	0	1	4	=	0	\geqq	1		[16]~[19]	ヘコピー		
8			0	1	5	0	1	=	0	\geqq	3		1			
9			1	0	3	0	1	=	0	\geqq	2		1			
10									LHS		RHS					

1.0-1整数計画:IPを解く



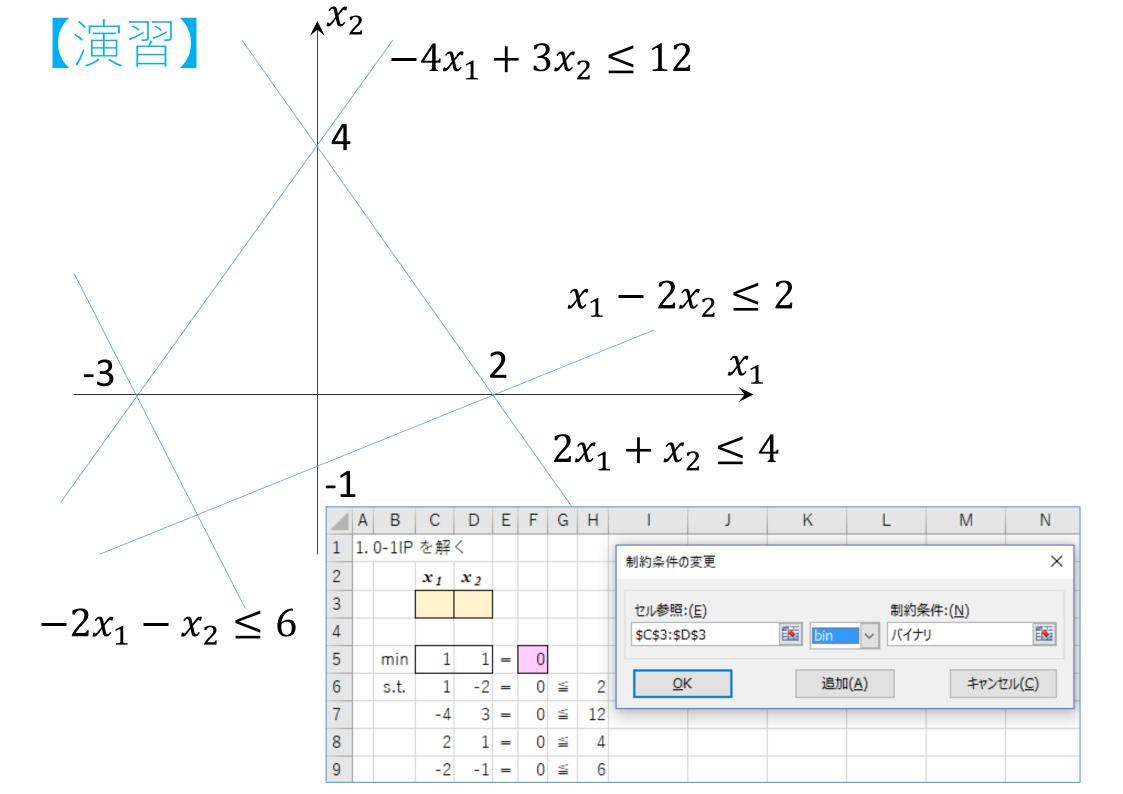
1. 0-1整数計画:IPを解く

(演習)

• 以下の0-1IPについてExcel solverで最適解を求めよ min. $x_1 + x_2$

min.
$$x_1 + x_2$$

s.t. $-4x_1 + 3x_2 \le 12$
 $x_1 - 2x_2 \le 2$
 $2x_1 + x_2 \le 4$
 $-2x_1 - x_2 \le 6$
 $x_1, x_2 \ge 0$
 $x_1, x_2 \in \{0,1\}$



2.ナップサック問題

• ナップサック問題 knapsack problem

n個の品物があり、ナップサック(1つ)に入れたい 各品物には重さがあり、価値がある ナップサックにはb kg まで、品物を入れることができる 価値総和が最大になるようにするには、どの品物を持って行けばよいか?

演習 0-1IPに定式化せよ

- ▶ 品物 i = 1,2,...,n
- \rightarrow 品物 i の価値: w_i
- \triangleright 品物 i の重さ: c_i
- ナップサック容量 b

$$ho$$
 0-1変数 $x_i = \begin{cases} 1 & \dots & \text{品物 } i \text{ をナップサックに入れる} \\ 0 & \dots & \text{otherwise} \end{cases}$

2.ナップサック問題

【定式化:解答例】

• ナップサック問題 knapsack problem

max.
$$w_1 x_1 + w_2 x_2 + \dots + w_n x_n$$

s.t. $c_1 x_1 + c_2 x_2 + \dots + c_n x_n \le b$
 $x_i \in \{0,1\} \ (i = 1, \dots, n)$

2.ナップサック問題

例題:ナップサック問題

100個の品物があり、ナップサック(**1**つ)に入れたい 各品物には、重さがあり、価値がある ナップサックには **40kg** まで、品物を入れることができる 価値総和が最大になるようにするには、どの品物を持って行けばよいか?

実習 Excel Solver で求解せよ

• 最大安定集合問題 maximum stable set problem

無向グラフ G = (V, E) $(V = \{1, 2, ..., n\})$

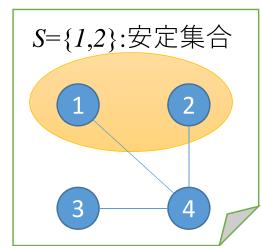
について、要素数が最大となる安定集合Sを求めなさい

※点の部分集合 $S(S\subseteq V)$ が 安定集合 $(stable\ set) \Leftrightarrow S$ 内の任意の2点間に枝がない

演習 0-1IPに定式化せよ

▶ 点集合 V= {1,2,...,n}

$$ho$$
 0-1変数 $x_i = \begin{cases} 1 & \dots & \text{点 } i \text{ が安定集合 } S \text{ に含まれる} \\ 0 & \dots & \text{otherwise} \end{cases}$



【定式化:解答例】

• 最大安定集合問題 maximum stable set problem

min.
$$x_1 + x_2 + \dots + x_n$$

s.t. $x_i + x_j \le 1 \ (\forall (i,j) \in E)$
 $x_i \in \{0,1\} \ (\forall i \in V)$

• 例題:最大安定集合問題

10人の学生がいる

人数が最大の仲良しグループをつくれ

※学生を点とし、仲が悪い学生間に枝を張ると、最大安定集合問題となる

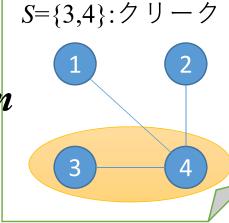
実習 Excel Solver で求解せよ

• 最大クリーク問題 *maximum clique problem*

無向グラフ
$$G = (V, E)$$
 $(V = \{1, 2, ..., n\})$

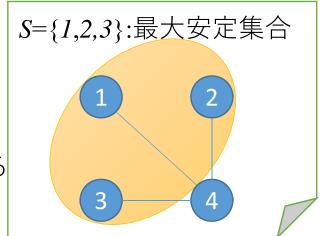
について、要素数が最大となるクリークCを求めなさい

※点の部分集合 C $(C \subseteq V)$ が \underline{O} \underline{U} \underline{U}



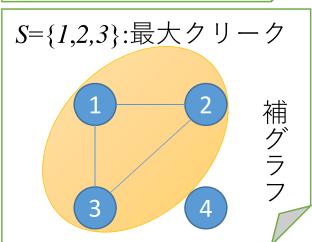
演習 0-1IPに定式化せよ

- ▶ 点集合 V= {1,2,...,n}
- ho 0-1変数 $x_i = \begin{cases} 1 & \dots & \text{in it it is in its important } C \text{ in its in its index } C \text{ in its ind$



(補足)

無向グラフG = (V, E)上の最大安定集合問題 =補グラフ \bar{G} = (V, \bar{E}) 上の最大クリーク問題



【定式化例】

• 最大クリーク問題 maximum clique problem

min.
$$x_1 + x_2 + \dots + x_n$$

s.t. $y_{ij} \le x_i$
 $y_{ij} \le x_j$ $(\forall (i,j) \in E \text{ with } i < j)$

$$\sum_{i < j} y_{ij} \ge k \sum_{i} x_i - \sum_{i=1}^{k-1} i \ (k = 2,3,...,n)$$

$$x_i \in \{0,1\} \ (\forall i \in V)$$

$$y_{ij} \in \{0,1\} \ (\forall (i,j) \in E \text{ with } i < j)$$

• 集合分割問題 set partition problem

集合 $V \in m$ 個に分割しなさい

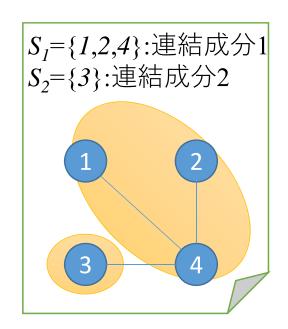
$$V=\{1,2,3,4\}, m=2$$

 $\rightarrow S_I=\{1,2,4\}:$ 分割1
 $S_2=\{3\}:$ 分割2

- $\otimes def$) Vの部分集合族 $\{V_1,...,V_m\}$ がVの分割 $\Leftrightarrow \bigcup_{i=1}^m V_i = V, V_i \cap V_j = \emptyset(\forall i,j;i \neq j)$
- ※連結成分分割(無向グラフG = (V, E)をm個の連結成分に分割せよ)

演習 0-1IPに定式化せよ

- ▶ Vの部分集合 V_i (i = 1,2,...)
- $ightharpoonup V_i$ を表す特性ベクトル $a_i \in \mathbf{R}^{|V|}$
- ho 0-1変数 $x_i = \begin{cases} 1 & \dots & V_i & を分割の構成要素として使う \\ 0 & \dots & otherwise \end{cases}$



【定式化:解答例】

• 集合分割問題 set partition problem

```
min. or max. 問題による何らかの目的s.t. a_1x_1 + a_1x_1 + \cdots = 1 x_i \in \{0,1\} \ (i = 1,2,\cdots)
```

• 例題:連結成分分割問題(飛び地なし集合分割問題)

6つの地区(A,B,...,F)があり、各地区の人口が与えられている

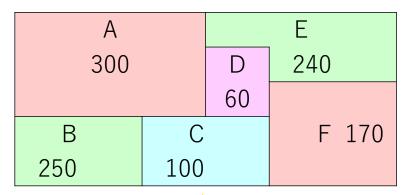
3つの地域に分割したい(ただし、分割後の各地域は連結であること)

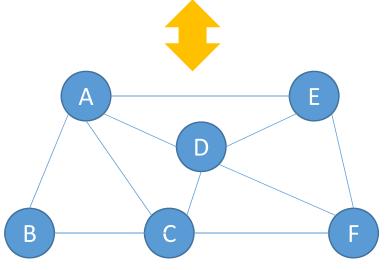
最大人口の地域と最小人口の地域の差を最小とする分割を求めよ

(演習)

Excel Solver で求解せよ

- ▶ Vの部分集合 V_i (i = 1,2,...)
- $ightharpoonup V_i$ を表す特性ベクトル $a_i \in R^{|V|}$
- $\triangleright V_i$ の人口 p_i
- \triangleright 0-1変数 x_i
- > 実数変数 u, l ...分割人口の上限と下限





【定式化:例題の解答例】

• 集合分割問題 set partition problem

min.
$$u - l$$

s.t. $a_1x_1 + a_2x_2 + \cdots = 1$
 $p_ix_i \le u \ (i = 1, 2, \cdots)$
 $p_ix_i + \bar{p}(1 - x_i) \ge l \ (i = 1, 2, \cdots)$
 $x_i \in \{0, 1\} \ (i = 1, 2, \cdots)$

 x_i は第i地域を採用するかどうかの0-1変数 1番目の制約式は,各地区は1回のみ使用,つまりたくさんある地域の内3つだけ採用(値が1になる.他は全部0) 2番目の制約式は,3つの地域の最大人口をu以下とする 3番目の制約式は,3つの地域の最小人口をl以上とする 3番目が2番目と違い,余計な項がついているのは, x_i の値が0の場合について対処するため.この余分な項がないと,lの値が0以下になって意味をなさないことに注意せよ

$$a_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, a_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \dots$$

iは分割のパターン(地域) を表すことに注意 例えば

- \checkmark a_1 は地区Aのみを含む地域
- \checkmark a_2 は地区A,Bからなる地域

であり、各地域の人口は p_1 =300, p_2 =550,...

$$\bar{p}$$
: = $\frac{1120}{3}$ = 373 (1分割あたり平均人口)

5.巡回セールスマン

• 巡回セールスマン問題 traveling salesman problem

無向グラフ G = (V, E) (V={1,2,...,n})

について、全ての点を丁度1度ずつ経由するコスト最小の巡回路を求めよ

(演習) 0-1IPに定式化せよ

- ightharpoonup 点集合 $V=\{1,2,...,n\}$, 枝(i,j) \in E上のコスト c_{ij}
- ho 0-1変数 $x_{ij} = egin{cases} 1 \dots & \text{巡回路として枝}(i,j) \in E \ e_{i
 ightarrow j}$ の順に通る otherwise

5.巡回セールスマン

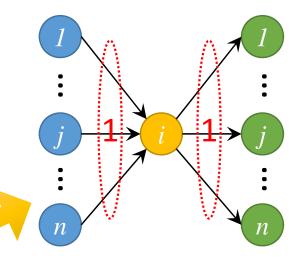
• 定式化

min.
$$\sum_{i \neq j} c_{ij} x_{ij}$$
s.t.
$$\sum_{j:j \neq i} x_{ij} = 1 \ (\forall i = 1, ..., n)$$

$$\sum_{j:j \neq i} x_{ji} = 1 \ (\forall i = 1, ..., n)$$

$$x_{ij} \in \{0,1\} \ (\forall i \neq j)$$

この制約の意図



しかし, この制約 だけでは部分巡回 路が含まれる

部分巡回路をどう回避する?

- 部分巡回路除去定式化
- ✓ ポテンシャル定式化
- ✓ 単一品種流定式化
- ✓ 多品種流定式化
- etc.

5. 巡回セールスマン

ポテンシャル定式化

min.

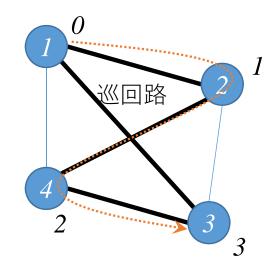
$$\sum_{i \neq j} c_{ij} x_{ij}$$

s.t.
$$\sum_{i:i\neq i} x_{ij} = 1 \ (\forall i = 1, ..., n)$$

$$\sum_{j:j\neq i} x_{ji} = 1 \ (orall i = 1, ..., n)$$
 部分巡回路が含まれる

$$x_{ij} \in \{0,1\} \ (\forall i \neq j)$$

巡回路に訪問順ラベルがつく



$$u_i + 1 - (n-1)(1 - x_{ij}) \le u_j \ (\forall i = 1, ..., n; j = 2, ..., n; i \ne j)$$

 $1 \le u_i \le n - 1 \ (\forall i = 2, ..., n)$

 u_i :点iの訪問順序を表す実数変数

- $\square u_1 = 0$
- $\square i \rightarrow j$ の順に訪問するとき $u_i = u_i + 1$

5. 巡回セールスマン

• 単一品種流定式化

min.

$$\sum_{i\neq j} c_{ij} x_{ij}$$

s.t.
$$\sum_{i:i\neq i} x_{ij} = 1 \ (\forall i = 1, ..., n)$$

$$\sum_{i:i\neq i} x_{ji} = 1 \ (orall i = 1, ..., n)$$
 部分巡回路が含まれる

$$x_{ij} \in \{0,1\} \ (\forall i \neq j)$$

点*1*から*3*のフローを流す 各点は1ずつ消費



$$\sum_{j} f_{1j} = n - 1$$

$$\sum_{j} f_{ji} - \sum_{j} f_{ij} = 1 \ (\forall i = 2, ..., n)$$

$$f_{1j} \le (n - 1)x_{1j} \ (\forall j \ne 1)$$

$$f_{ij} \le (n - 2)x_{ij} \ (\forall i \ne j, i \ne 1, j \ne 1)$$

$$f_{ij} \ge 0 \ (\forall i \ne j)$$

 f_{ii} : 点 $i \rightarrow j$ のフロー

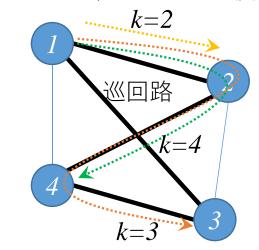
- □ 点*1*から *n-1* のフローを流す □ 各点では *1* 消費する
- □ フローは巡回路上のみ流れる

5. 巡回セールスマン

• 多品種流定式化

min.
$$\sum_{i \neq j} c_{ij} x_{ij}$$
s.t. $\sum_{j:j \neq i} x_{ij} = 1 \ (\forall i = 1, ..., n)$ $\sum_{j:j \neq i} x_{ji} = 1 \ (\forall i = 1, ..., n)$ 含まれる $x_{ij} \in \{0,1\} \ (\forall i \neq j)$

点1から3種のフローを流す



$$\sum_{j} f_{ji}^{k} - \sum_{j} f_{ij}^{k} = \begin{cases} -1(i=1) \\ 0(i \neq 1, k) \\ 1(i = k) \end{cases} (\forall k = 2, ..., n)$$

$$f_{ij}^{k} \leq x_{ij} (\forall k, i, j)$$

$$f_{ij}^{k} \geq 0 (\forall i \neq j, j \neq 1, k)$$

$$f_{ij}^{k} \geq 0 (\forall i \neq j, j \neq 1, k)$$

$$f_{ij}^{k} \leq x_{ij} (\forall k, i, j)$$

$$f_{ij}^{k} \geq 0 (\forall i \neq j, j \neq 1, k)$$

$$f_{ij}^{k} \geq 0 (\forall i \neq j, j \neq 1, k)$$

$$f_{ij}^{k} \geq 0 (\forall i \neq j, j \neq 1, k)$$

$$f_{ij}^{k} \geq 0 (\forall i \neq j, j \neq 1, k)$$

$$f_{ij}^{k} \geq 0 (\forall i \neq j, j \neq 1, k)$$

受け取る(*k*=2は点2, *k*=3は点 3,..., *k=n*は点*n*が受け取る) 各フローは巡回路上のみ流れる

参考文献

- 1. A. Schrijver: Theory of Linear and Integer Programming, John Wiley and Sons, 1986.
- 2. L.A. Wolsey: Integer Programming, John Wiley and Sons, 1998.
- 3. M. Conforti, G. Cornuejols and G. Zambelli: Integer Programming, Springer, 2014.
- 4. 久保幹雄, J.P.ペドロソ, 村松正和, A.レイス:あたらしい数理最適化, 近代科学社, 2012.
- 5. 久保幹雄,小林和博,斉藤努,並木誠,橋本英樹:Python言語によるビジネスアナリティクス,近代科学社,2016.
- 6. 藤澤克樹,後藤順哉,安井雄一郎:Excelで学ぶOR,オーム社, 2011.
- 7. 堀田敬介:えくせるであそぶ, 創成社, **2005**.