2018 | 6 | 22 Fri.

問題解決技法入門

4. Data Analysis2. Data Visualization using R

堀田 敬介

R commanderでデータの視覚化

データの準備:csv ファイル

		リーグ	試合数	勝数	負数	引分数	勝率	得点	失点	本塁打	盗塁	打率	防御率
	広島	セ	143	89	52	2	0.631	684	497	153	118	0.272	3.2
bb2016.csv	巨人	セ	143	71	69	3	0.507	519	543	128	62	0.251	3.45
	DeNA	セ	143	69	71	3	0.493	572	588	140	67	0.249	3.76
※)2016年ブロ野球	阪神	セ	143	64	76	3	0.457	506	546	90	59	0.245	3.38
セ・パ成績 (Yahoo Japan! Sports naviより)	ヤクルト	セ	143	64	78	1	0.451	594	694	113	82	0.256	4.73
	中日	セ	143	58	82	3	0.414	500	573	89	60	0.245	3.65
	日本ハム	パ	143	87	53	3	0.621	619	467	121	132	0.266	3.06
	ソフトバンク	パ	143	83	54	6	0.606	637	479	114	107	0.261	3.09
	ロッテ	ノペ	143	72	68	3	0.514	583	582	80	77	0.256	3.66
	西武	パ	143	64	76	3	0.457	619	618	128	97	0.264	3.85
	楽天	パ	143	62	78	3	0.443	544	654	101	56	0.257	4.11
	オリックス	パ	143	57	83	3	0.407	499	635	84	104	0.253	4.18

② Rの起動:「プログラム」で「R x64 3.4.0」を選択

- 注) x64 = 64 bit 用のプログラム(アプリ)
- 注) 3.4.0 = Rのバージョン

- 注) 起動すると $[R Console(64-bit)] \geq [R = 7)$ の2つのウィン ドウが開く、「Rコマンダー」を使う

R commanderでデータの視覚化

- ▶ 『ファイルまたはクリップボード, URL…』で以下を設定
 - ▶ データファイルの場所 = ローカルファイルシステム
 - > フィールドの区切り記号 = カンマ[,]
 - ▶ 少数点の記号 = ピリオド[.] →[OK]クリック
 - ▶ 注)「データセットDatasetがすでに存在…上書き…」→[Yes]
- ▶ ①で準備したファイル「*.csv」を選び[開く]
- ▶ [データセットを表示]ボタンをクリックし内容を確認
 - 注)確認後は、必ず「×」で閉じる

▶ 『ケースの名前を設定』で以下を設定

- ▶ 行名を含む変数を選択 = ケース名に設定したい変数を一つ クリックする →選んだ文字が反転する →[OK]クリック
- ▶ [データセットを表示]ボタンをクリックし内容を確認
 - ▶ 注)指定した変数がケース名になっていることを確認
 - 注)確認後は、必ず「×」で閉じる

- ▶ データ:変数(1つ選択) = 1つを選択(例:本塁打)
- ▶ データ:[層別のプロット]クリック

→層別変数(1つ選択)=1つを選択(例:リーグ)→[OK]

オプション:ラベルを表示 = それぞれ適切に設定

例:X軸のラベル=リーグ

Y軸のラベル = 本数

グラフのタイトル = セ・パ 本塁打比較

> データ: [Plot back-to-back by..]クリック
 → 層別変数(1つ選択) = 1つを選択(例: リーグ)→[OK]

R commanderでデータの視覚化 ⑦ 散布図を描く ▶「グラフ」ー「散布図」を選択 ▶ 『散布図』で以下設定 8 0 ▶ データ:x変数 0 82 (例:打率) 0 ≻ データ:y変数 8 (例:勝数) 22 勝数 0 \rightarrow [OK] 0 2 0 80 0 0

8

0.245

0

0.260

打率

0.265

0.270

0

0.255

0.250

- ◆ 山本他 『Rで学ぶデータサイエンス12統計データの視覚化』 共立出版(2013)
- ◆ 奥村晴彦『Rで楽しむ統計』共立出版(2016)
- ◆ J. P. Lander 『みんなのR』マイナビ(2015)
- ◆ W. Chang **[Rグラフィックス クックブック]オライリー**(2013)
- ◆ 青木繁伸『Rによる統計解析』オーム社(2009)
- ◆ 荒木孝治 『RとRコマンダーではじめる多変量解析』日科技連(2007)
- ◆ 金明哲 『Rによるデータサイエンス』 森北出版(2007)
- 新納浩幸『Rで学ぶクラスタ解析』オーム社(2007)

もっと知りたい人へ

- 関連する経営学科の授業
 - 「統計の見方」(1/2セメ)
 - 「統計の分析と利用」(2セメ)
 - 「**データ処理Ⅱ**」(2/3セメ)
 - 「統計データの扱い方」(3/4セメ)
 - 「**多変量の統計データ解析**」(4セメ)

Rでデータの視覚化

csv ファイルをデータとして利用

- 「マイドキュメント(Y:)」に「R」フォルダをつくり中に保存

		リーグ	試合数	勝数	負数	引分数	勝率	得点	失点	本塁打	盗塁	打率	防御率
	広島	セ	143	89	52	2	0.631	684	497	153	118	0.272	3.2
bb2016.csv	巨人	セ	143	71	69	3	0.507	519	543	128	62	0.251	3.45
	DeNA	セ	143	69	71	3	0.493	572	588	140	67	0.249	3.76
※)2016年ブロ野球	阪神	セ	143	64	76	3	0.457	506	546	90	59	0.245	3.38
セ・パ成績 (Yahoo Japan! Sports naviより)	ヤクルト	セ	143	64	78	1	0.451	594	694	113	82	0.256	4.73
	中日	セ	143	58	82	3	0.414	500	573	89	60	0.245	3.65
	日本ハム	パ	143	87	53	3	0.621	619	467	121	132	0.266	3.06
	ソフトバンク	パ	143	83	54	6	0.606	637	479	114	107	0.261	3.09
	ロッテ	パ	143	72	68	3	0.514	583	582	80	77	0.256	3.66
	西武	パ	143	64	76	3	0.457	619	618	128	97	0.264	3.85
	楽天	パ	143	62	78	3	0.443	544	654	101	56	0.257	4.11
	オリックス	パ	143	57	83	3	0.407	499	635	84	104	0.253	4.18

ファイルの読込み

※1行目にheaderあり ※各行の名称は列1に

> dfbb <- read.csv("Y:/R/bb2016.csv", header=T, row.names=1)</pre>

※ファイルのフルパス 例)YドライブのRフォルダ内にあるbb2015.csvという名前のファイル

Rでデータの視覚化

- 読込データの確認
 - dfbbに代入したdata frame の中身を全て表示

> dfbb

- dfbbに代入したdata frame の中身を一部(先頭)表示

> head(dfbb)

- dfbbに代入したdata frame の中身を一部(後尾)表示 > tail(dfbb)
- dfbbの項目名表示(header=Tで読んだデータ)

> names(dfbb)

- dfbbのレコード名表示(row.names=1で指定した)

> row.names(dfbb)

- ・ 箱ひげ図を描画

 ※dfbb\$本塁打... data.frameである dfbbの項目"本塁打"を箱ひげ図のデータとして使用

 boxplot(dfbb\$本塁打)

 …①
- オプションを指定し箱ひげ図を描画

> boxplot(dfbb\$本塁打, col="tomato", xlab="本塁打", ylab="本数", main="12チーム本塁打数の箱ひげ図")2

<オプション> col … 色の指定(colour) xlab … x軸のラベル(label) ylab … y軸のラベル(label) main … タイトル

Rでデータの視覚化

グループ毎に箱ひげ図を描画

> boxplot(dfbb\$本塁打~dfbb\$リーグ, xlab="本塁打", ylab="本数", col=c("dodgerblue","forestgreen"), main="セ・パ本塁打比較")

Rでデータの視覚化

※scale数を大きくするとより詳細な幹葉図に

(default=1)

・ 幹葉図(stem-and-leaf plot)を描画

> stem(dfbb\$本塁打)

The decimal point is 1 digit(s) to the right of the |

8 | 0490

10 | 134

- 12 | 188
- 14 | 03

・ 幹葉図を描画(オプション scale=2)

> stem(dfbb\$本塁打, 2)

The decimal point is 1 digit(s) to the right of the |

- 8 | 049
- 9 | 0
- 10 | 1
- 11 | 34
- 12 | 188
- 13 |
- 14 | 0
- 15 | 3

Rでデータの視覚化

• csv ファイルをデータとして利用

- 「マイドキュメント(Y:)」に「R」フォルダをつくり中に保存

bi2016.csv

氏名		チーム	リーグ	打率	試合数	打席数	打数	安打	二塁打	三塁打	本塁打	塁打数	打点	得点	三振	四球	死球	犠打	犠飛	盗塁	出塁率	長打率	得点圈	併殺	失策
坂本	勇人	E	セ	0.344	137	576	488	168	28	3	3 23	271	75	96	67	81	. 0	1	. 6	13	0.433	0.555	0.339	6	16 ز
鈴木	誠也	広	セ	0.335	129	528	466	156	26	8	3 29	285	95	76	5 79	53	3	3	3	16	0.404	0.612	0.346	10) 2
筒香	嘉智	D	セ	0.322	133	561	469	151	28	4	44	319	110	89	105	87	3	C	2	0	0.43	0.68	0.393	6	2 از
菊池	涼介	広	セ	0.315	141	640	574	181	22	3	3 13	248	56	92	106	40	0	23	3	13	0.358	0.432	0.343	3	3 4
福留	孝介	神	セ	0.311	131	523	453	141	25	3	3 11	205	59	52	2 78	61	. 3	C	6	0	0.392	2 0.453	0.31	. 6	1 ز
山田	哲人	ヤ	セ	0.304	133	590	481	146	26	3	38	292	102	102	101	97	8	C	4	30	0.425	0.607	0.299	16	ວ່ 5
村田	修一	巨	セ	0.3024	143	576	529	160	32	0) 25	267	81	58	8 83	38	5	2	2 2	1	0.354	0.505	0.305	21	15
川端	慎吾	ヤ	セ	0.3023	103	458	420	127	22	1	. 1	154	32	48	31	34	- 1	1	. 2	3	0.354	0.367	0.301	13	3 5
新井	貴浩	広	セ	0.3	132	513	454	136	23	2	2 19	220	101	66	101	54	1	C	4	0	0.372	0.485	0.323	12	2 5

※)2016年プロ野球個人成績(Yahoo Japan! Sports naviより)

• ファイル読込み

> dfbi <- read.csv("Y:/R/bi2016.csv", header=T, row.names=1)</pre>

【演習】

箱ひげ図で表示したい項目を1つ選び(例:打率,安打,本塁打,打点,得点,etc.),12 チーム毎の箱ひげ図を描画せよ.

さらに、可能なら、色、x軸ラベル、y軸ラベル、タイトルを適切に設定してみよう

その他のグラフ作成例

棒グラフ

散布図

※これらのグラフを作成したい時は、Excelを使った方が良い

棒グラフを作成 ※ 色指定用のベクトル生成. "royalblue"を6回 repeat し, "violetred"を6回 repeat したベクトルをつくり cc に代入

> cc <- c(rep("royalblue",6), rep("violetred",6)) > barplot(dfbb\$勝数, names.arg=row.names(dfbb), col=cc, xlab=" チーム名", ylab="勝数")

dfbb\$勝数 ... data.frameである dfbb の項目"勝数"を棒グラフのデータとして使用 names.arg ... それぞれの棒に対応する名称

col ... 棒の色指定 xlab ... x軸のラベル ylab ... y軸のラベル

• Tips ! > colors() ※Rで使える657色

の名称リスト表示

Rでデータの視覚化

散布図を作成(1)

> plot(dfbb\$勝率, dfbb\$防御率, xlab="勝率", ylab="防御率", col="purple")

x軸を dfbb\$勝率 y軸を dfbb\$防御率 のデータを用い散布図を作成

xlab ... x軸ラベルの指定 ylab ... y軸ラベルの指定 col ... プロットする点の色指定

> dfbb\$勝率 は dfbb[,6] でもよい dfbb\$防御率 は dfbb[,12] でもよい

Rでデータの視覚化

散布図を作成(2)

> plot(dfbb[,6], dfbb[,12], xlab="勝率", ylab="防御率", type="b")

• 散布図を作成(4)

※プロットはせずに、枠・軸だけを描画

- O X

> plot(dfbb[,6], dfbb[,12], xlab="勝率", ylab="防御率", type="n") > text(dfbb[,6], dfbb[,12], row.names(dfbb))

R R Graphics: Device 2 (ACTIVE)

※チーム名称をプロット点としてかく (read.csvでcsvファイルを読み込んだ時 に, row.namesとして1列目のチーム名称 を指定したことを思いだそう!)

dfbb[,6] は dfbb\$勝率 でもよい dfbb[,12] は dfbb\$防御率 でもよい

箱ひげ図と散布図を作成(1)-scatterplot()-

> install.packages("car") < ※scatterplot()の使用準備 package "car"のインストール > library(car) < package "car"の読込み</p>

> scatterplot(dfbb[,4], dfbb[,8], xlab="負数", ylab="失点")

- 箱ひげ図と散布図を作成(2)-scatterplot()-
 - > install.packages("sp")
 - > install.packages("maptools")
 - > library(sp)
 - > library(maptools)

※pointLabel()の使用準備 - packages "sp","maptools"のインストール

_ packages "sp", "maptools"の読込み (注 : 必ず sp → maptools の順!)

> scatterplot(dfbb[,4], dfbb[,8], xlab="負数", ylab="失点", reg.line=F, smooth=F)

> pointLabel(x=dfbb[,4], y=dfbb[,8], labels=row.names(dfbb))

※平滑化線は描かない

※散布図の点のラベルを row.names(dfbb)として書く ※回帰直線 regression line は描かない(FはFalseの意)

Rでデータの視覚化

