2023/5/29 Mon.



## 最適化活用 整数計画ソルバーの利用

堀田 敬介

## 輸送問題を解く

# ▶ 輸送問題の最適化(例1) ▶ 2工場で製品を供給できる

▶ 3人の顧客がいて, 需要がある

▶ 2工場→3顧客への単位あたり輸送コストが所与

▶ 輸送コストが最小となる配送計画をたてよ

- ▶ 最適化問題の定式化(変数設定)
   ▶ 変数 x<sub>ij</sub> ... 工場i→顧客jへの輸送量
   ▶ 変数行列 X X = (x<sub>11</sub> x<sub>12</sub> x<sub>13</sub>) x<sub>21</sub> x<sub>22</sub> x<sub>23</sub>)
- 最適化問題の定式化(係数表記)

   工場の供給を表す係数ベクトルs

   顧客の需要を表す係数ベクトルd

   輸送コストを表す係数行列C



|            | 需要    | 50 | 80 | 60 |
|------------|-------|----|----|----|
| 供給         | 工場乀顧客 |    | 2  | 3  |
| <i>120</i> | 1     | 3  | 2  | 4  |
| <i>130</i> | 2     | 5  | 6  | 5  |

 $\mathbf{s} = \begin{pmatrix} s_1 \\ s_2 \end{pmatrix} = \begin{pmatrix} 120 \\ 130 \end{pmatrix}$  $d_2$ 80  $c_{12}$   $c_{13}$ 

## 輸送問題を解く

$$\boldsymbol{X} = \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \end{pmatrix}$$

#### > 最適化問題の定式化(ベタ表記)

min. 
$$3x_{11}+2x_{12}+4x_{13}+5x_{21}+6x_{22}+5x_{23}$$
  
s. t.  $x_{11}+x_{12}+x_{13} \leq 120$   
 $x_{21}+x_{22}+x_{23} \leq 130$   
 $x_{11}+x_{21}=50$   
 $x_{12}+x_{22}=80$   
 $x_{13}+x_{23}=60$   
 $x_{11}, x_{12}, x_{13}, x_{21}, x_{22}, x_{23} \geq 0$ 

$$s = {\binom{S_1}{S_2}} = {\binom{120}{130}} \\ d = {\binom{d_1}{d_2}} = {\binom{50}{80}} \\ {\binom{d_3}{60}} = {\binom{C_{11} \quad C_{12} \quad C_{13}}{C_{21} \quad C_{22} \quad C_{23}}} = {\binom{3}{5} \quad \frac{2}{6} \quad \frac{4}{5}}$$

#### 最適化問題の定式化(Σ表記)

$$\begin{aligned} \min \sum_{i=1}^{2} \sum_{j=1}^{3} c_{ij} x_{ij} \\ \text{s. t. } \sum_{j=1}^{3} x_{ij} \leq s_{i} (i = 1, 2) \\ \sum_{i=1}^{2} x_{ij} = d_{j} (j = 1, ..., 3) \\ x_{ij} \geq 0 \ (i = 1, 2; j = 1, ..., 3) \end{aligned}$$

#### ▶ 新規プロジェクトの作成

- ① [ファイル(F)]-[新規(N)]-[OPLプロジェクト]を選択
- ② [プロジェクト名]を記入(例: Transportation)し、3カ所にチェックする

☑ デフォルトの実行構成の追加

- ☑ モデルの作成
- ☑ データの作成

③ [終了]をクリック

プロジェクト名は自由だが, 半角 英数で何の問題を解こうとしてい るのかが分かる名前が良い

> プロジェクト内のいくつかの名前を変更

- ✓ [構成1] → [config1] ※日本語を英語に変更しないと実行時エラーになる
- ✓ モデルファイル [Transportation.mod] → [tr.mod]
- ✓ データファイル [Transportation.dat] → [trex1.dat]

モデルファイル・データファイルを記述し保存(次ページ参照)
 [config1]にモデルファイルとデータファイルをセットする

➤ tr.mod

```
int j_max = ...;// 列の添え字の最大値
range I = 1..i max;// 行の添え字の範囲 [1..i max]を指定
range J = 1..j max;// 列の添え字の範囲 [1..j max]を指定
int d[J] = ...;// 需要ベクトル設定 d = [d1,d2,d3]
int s[I] = ...;// 供給ベクトル設定 s = [s1,s2]
int c[I,J] = ...;// 輸送コスト設定 C サイズI×Jの行列
dvar float+ x[I,J];// 変数宣言:変数ベクトル(size: I×J)
minimize
 sum(i in I) sum(j in J) c[i,j]*x[i,j];
subject to{
 forall(i in I) {
   sum(j in J) x[i,j] <= s[i];</pre>
 };
 forall(j in J) {
   sum(i in I) x[i,j] == d[j];
 };
};
```

**int** i\_max = ...;// 行の添え字の最大値

> trex1.dat

```
i_max = 2;// 行数の最大値を指定
j_max = 3;// 列数の最大値を指定
d = [50 80 60];
C = [
[3 2 4]
[5 6 5]
];
s = [
120
130
];
```



## 輸送問題を解く

- > 輸送問題の最適化(例2)
  - ▶ 工場が製品を供給, 顧客が需要, 工場→顧客コスト
  - ▶ 輸送コストが最小となる配送計画をたてよ
- 最適化問題の定式化(ベタ・Σ表記)
  - > 変数 x<sub>ij</sub> … 工場i→顧客jへの輸送量
  - ▶ 係数vector s:供給supply, d:需要demand
  - ▶ 係数matrix C:輸送コストcost

|     | 需要    | <i>40</i> | 30 | 70 | 80 | <i>60</i> | 50 |
|-----|-------|-----------|----|----|----|-----------|----|
| 供給  | 工場乀顧客 | 1         | 2  | 3  | 4  | 5         | 6  |
| 80  | 1     | 1         | 2  | 4  | 3  | 1         | 2  |
| 90  | 2     | 2         | 1  | 5  | 2  | 4         | 1  |
| 100 | 3     | 3         | 6  | 2  | 1  | 2         | 3  |
| 110 | 4     | 4         | 3  | 5  | 2  | 3         | 2  |

> CPLEXで解く(モデルファイル[tr.mod]は共通で使えるので[trex2.dat]のみ作り解く)

## 割当問題を解く

- >割当問題の最適化(例1)
  - ▶ 今すべき仕事は3つあり,3人の部下がいる
  - ▶ 各部下は1つの仕事を引き受けられる



- > 上司は各仕事を任せたときの部下の出来具合を5段階で評価済(右下表)
- ▶ この部署のパフォーマンスが最大になるように部下へ仕事を割り当てよ
- 最適化問題の定式化(変数設定)
   0-1変数  $x_{ij} = \begin{cases} 1 \dots d = i \delta \otimes r_j \wedge \otimes s_{ij} \\ 0 \dots d = i \delta \otimes r_j \wedge \otimes s_{ij} \end{pmatrix}$

| 仕事乀部下 | 1 | 2 | 3 |
|-------|---|---|---|
| 1     | 2 | 2 | 4 |
| 2     | 5 | 3 | 2 |
| 3     | 4 | 1 | 3 |

| ▶ 変数行列X | $\boldsymbol{X} = \begin{pmatrix} \boldsymbol{y} \\ \boldsymbol{y} \\ \boldsymbol{y} \\ \boldsymbol{y} \end{pmatrix}$ | x <sub>11</sub> :<br>x <sub>21</sub> :<br>x <sub>31</sub> : | x <sub>12</sub><br>x <sub>22</sub><br>x <sub>32</sub> | $\begin{pmatrix} x_{13} \\ x_{23} \\ x_{33} \end{pmatrix}$ |
|---------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------|
|---------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------|

▶ 最適化問題の定式化(係数表記)

▶ 評価を表す係数行列 C

$$\boldsymbol{C} = \begin{pmatrix} 2 & 2 & 4 \\ 5 & 3 & 2 \\ 4 & 1 & 3 \end{pmatrix}$$

## 割当問題を解く

#### > 割当問題の最適化((ベタ表記)

max. 
$$2x_{11}+2x_{12}+4x_{13}+5x_{21}+3x_{22}+2x_{23}+4x_{31}+1x_{32}+3x_{33}$$
  
s. t.  $x_{11}+x_{12}+x_{13}=1$   
 $x_{21}+x_{22}+x_{23}=1$   
 $x_{31}+x_{32}+x_{33}=1$   
 $x_{11}+x_{21}+x_{31} \leq 1$   
 $x_{12}+x_{22}+x_{32} \leq 1$   
 $x_{13}+x_{23}+x_{33} \leq 1$   
 $x_{11}, x_{12}, x_{13}, x_{21}, x_{22}, x_{23} \in \{0,1\}$ 

ようしていた。<br/>
ようした。<br/>
としていた。<br/>
していた。<br/>
していた。<br/>
していた。<br/>
としていた。<br/>
しいた。<br/>
しいた。<br/

$$\begin{aligned} \max \sum_{i=1}^{3} \sum_{j=1}^{3} c_{ij} x_{ij} \\ \text{s. t. } \sum_{j=1}^{3} x_{ij} &= 1 \ (i = 1, \dots, 3) \\ \sum_{i=1}^{3} x_{ij} &\leq 1 \ (j = 1, \dots, 3) \\ x_{ij} &\in \{0, 1\} (i = 1, \dots, 3; j = 1, \dots, 3) \end{aligned}$$

$$\boldsymbol{X} = \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{pmatrix}$$

$$\boldsymbol{C} = \begin{pmatrix} 2 & 2 & 4 \\ 5 & 3 & 2 \\ 4 & 1 & 3 \end{pmatrix}$$

#### ▶ 新規プロジェクトの作成

- ① [ファイル(F)]-[新規(N)]-[OPLプロジェクト]を選択
- ② [プロジェクト名] を記入(例: Assignment)し, 3カ所にチェックする

☑ デフォルトの実行構成の追加

- ✔ モデルの作成
- ☑ データの作成

③ [終了]をクリック

プロジェクト名は自由だが、半角 英数で何の問題を解こうとしてい るのかが分かる名前が良い

▶ プロジェクト内のいくつかの名前を変更

- ✓ [構成1] → [config1] ※日本語を英語に変更しないと実行時エラーになる
- ✓ モデルファイル [Assignment.mod] → [as.mod]
- ✓ データファイル [Assignment.dat] → [asex1.dat]

モデルファイル・データファイルを記述し保存(次ページ参照)
 [config1]にモデルファイルとデータファイルをセットする

> as.mod

```
int i_max = ...; // 行の添え字の最大値
int j_max = ...;// 列の添え字の最大値
range I = 1..i max;// 行の添え字の範囲 [1..i max]を指定
range J = 1..j max;// 列の添え字の範囲 [1..j max]を指定
int c[I,J] = ...;// 評価値Cij(size:I×J)
dvar int+ x[I,J] in 0..1;// 変数宣言:0-1変数(size:I×J)
maximize
 sum(i in I) sum(j in J) c[i,j]*x[i,j];
subject to{
 forall(i in I) {
   sum(j in J) x[i,j] == 1;
 };
 forall(j in J) {
   sum(i in I) x[i,j] <= 1;</pre>
 };
};
```

➤ asex1.dat

| <pre>i_max = 3; j_max = 3;</pre> |
|----------------------------------|
| c = [<br>[2 2 4]                 |
| [5 3 2]<br>[4 1 3]<br>];         |



## 割当問題を解く2

- >割当問題の最適化(例2)
  - ▶ 仕事は4つ, 部下は7人, 各部下は1つの仕事を引き受けられる
  - ▶ 上司は部下を5段階[1,2,3,4,5]で評価済(下表)
  - ▶ この部署のパフォーマンスが最大になるように部下へ仕事を割り当てよ
- ▶ 最適化問題の定式化(ベタ・Σ表記)
   ▶ 0-1変数 x<sub>ij</sub> =1 ... 仕事i を部下j へ割り当てる, x<sub>ij</sub> =0 ... 割り当てない
  - > 係数matrix C:上司による部下評価値

| 仕事乀部下 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|-------|---|---|---|---|---|---|---|
| 1     | 2 | 4 | 2 | 1 | 3 | 1 | 4 |
| 2     | 3 | 1 | 3 | 2 | 5 | 4 | 2 |
| 3     | 1 | 3 | 4 | 4 | 4 | 3 | 3 |
| 4     | 4 | 2 | 1 | 4 | 5 | 2 | 1 |

> CPLEXで解く(モデルファイル[as.mod]は共通で使えるので[asex2.dat]のみ作り解く)

## 生産計画をたてる

# 生産計画の最適化(例1) 4種の材料 A, B, C, D がある 5種の製品 α, β, γ, δ, ε をつくる 各材料の所有数, 各製品を1単位 作るのに必要な材料数, 利益は右表 総利益を最大にする生産計画をたてたい

▶ 最適化問題の定式化(係数表記)

▶ 利益を表す係数ベクトル c

▶ 材料所持数を表す係数ベクトル b

▶ 必要材料数を表す係数行列 А

| 材料乀製品 | α | β | γ | δ  | Е | 量         |
|-------|---|---|---|----|---|-----------|
| A     | 3 | 0 | 1 | 3  | 1 | 80        |
| В     | 1 | 2 | 0 | 3  | 2 | 75        |
| С     | 0 | 4 | 2 | 5  | 0 | <b>95</b> |
| D     | 2 | 1 | 0 | 1  | 2 | 70        |
| 利益    | 6 | 7 | 3 | 10 | 5 |           |

| _ •              |                         |                       |                       |       |                         |                        |           |
|------------------|-------------------------|-----------------------|-----------------------|-------|-------------------------|------------------------|-----------|
| <b>c</b> = (     | [ <i>C</i> <sub>1</sub> | <i>C</i> <sub>2</sub> | <i>C</i> <sub>3</sub> | C     | 4                       | <mark>C</mark> 5)      |           |
| = (              | 6                       | 7                     | 3                     | 10    | 5)                      |                        |           |
| $\mathbf{b} = 0$ | $(b_1)$                 | <i>b</i> <sub>2</sub> | $b_3$                 | 3 İ   | <b>b</b> <sub>4</sub> ) |                        |           |
| = (              | (80                     | 75                    | 5 9                   | 95    | 70                      | )                      |           |
|                  | $a_{12}$                | 1                     | a <sub>12</sub>       | $a_1$ | .3                      | <i>a</i> <sub>14</sub> | $a_{15}$  |
| A =              | $a_{22}$                | 1                     | $a_{22}$              | $a_2$ | 23                      | $a_{24}$               | $a_{25}$  |
| ••               | $a_{32}$                | 1 (                   | $a_{32}$              | $a_3$ | 3                       | $a_{34}$               | $a_{35}$  |
|                  | $\langle a_4 \rangle$   | 1 (                   | $a_{42}$              | $a_4$ | -3                      | $a_{44}$               | $a_{45}/$ |
|                  | /3                      | 0                     | 1                     | 3     | 1\                      |                        |           |
| _                | 1                       | 2                     | 0                     | 3     | 2                       |                        |           |
| _                | 0                       | 4                     | 2                     | 5     | 0                       |                        |           |
|                  | \2                      | 1                     | 0                     | 1     | 2/                      |                        |           |

#### 生産計画をたてる > 最適化問題の定式化(ベタ表記) max. $6x_1+7x_2+3x_3+10x_4+5x_5$ s. t. $3x_{11}+0x_{12}+1x_{13}+3x_{14}+1x_{15} \leq 80$ $1x_{21}+2x_{22}+0x_{23}+3x_{24}+2x_{25} \leq 75$ $0x_{31}+4x_{32}+2x_{33}+5x_{34}+0x_{35} \leq 95$ $2x_{41}+1x_{42}+0x_{43}+1x_{44}+2x_{45} \leq 70$ $x_1, x_2, x_3, x_4, x_5 \geq 0$

$$\begin{array}{l} \boldsymbol{c} = \begin{pmatrix} c_1 & c_2 & c_3 & c_4 & c_5 \end{pmatrix} \\ = \begin{pmatrix} 6 & 7 & 3 & 10 & 5 \end{pmatrix} \\ \boldsymbol{b} = \begin{pmatrix} b_1 & b_2 & b_3 & b_4 \end{pmatrix} \\ = \begin{pmatrix} 80 & 75 & 95 & 70 \end{pmatrix} \\ A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} & a_{15} \\ a_{21} & a_{22} & a_{23} & a_{24} & a_{25} \\ a_{31} & a_{32} & a_{33} & a_{34} & a_{35} \\ a_{41} & a_{42} & a_{43} & a_{44} & a_{45} \end{pmatrix} \\ = \begin{pmatrix} 3 & 0 & 1 & 3 & 1 \\ 1 & 2 & 0 & 3 & 2 \\ 0 & 4 & 2 & 5 & 0 \\ 2 & 1 & 0 & 1 & 2 \end{pmatrix}$$

→ 最適化問題の定式化(Σ表記)

$$\max \sum_{j=1}^{5} c_{j} x_{j}$$
  
s. t.  $\sum_{j=1}^{5} a_{ij} x_{j} \le b_{i} (i = 1, ..., 4)$   
 $x_{j} \ge 0 \ (j = 1, ..., 5)$ 

#### ▶ 新規プロジェクトの作成

- ① [ファイル(F)]-[新規(N)]-[OPLプロジェクト]を選択
- ② [プロジェクト名] を記入(例: Production Planning)し, 3カ所にチェックする

☑ デフォルトの実行構成の追加

- ✔ モデルの作成
- ☑ データの作成

③ [終了]をクリック

プロジェクト名は自由だが, 半角 英数で何の問題を解こうとしてい るのかが分かる名前が良い

- ▶ プロジェクト内のいくつかの名前を変更
  - ✓ [構成1] → [config1] ※日本語を英語に変更しないと実行時エラーになる
  - ✓ モデルファイル [ProductionPlanning.mod] → [pp.mod]
  - ✓ データファイル [ProductionPlanning.dat] → [ppex1.dat]

モデルファイル・データファイルを記述し保存(次ページ参照)
 [config1]にモデルファイルとデータファイルをセットする

▶ pp.mod

```
int i_max = ...;// 材料数
int j_max = ...;// 製品数
range I = 1...i_max;// 材料集合の範囲
range J = 1..j max;// 製品集合の範囲
int a[I,J] = ...; // 各製品1単位あたりの必要材料数を表す行列
int b[I] = ...;// 材料i の所持数
int c[J] = ...; // 製品j の1単位あたり利益
dvar float+ x[J];// 製品j の生産量(非負)
maximize
 sum(j in J) c[j]*x[j];
subject to {
 forall(i in I) {
   sum(j in J) a[i,j]*x[j] <= b[i];</pre>
}
```

#### > ppex1.dat

```
i_max = 4;
j_max = 5;
c = [6 7 3 10 5];
b = [80 75 95 70];
a = [
[3 0 1 3 1]
[1 2 0 3 2]
[0 4 2 5 0]
[2 1 0 1 2]
];
```

#### > 計算結果の確認([解]タブの中身)



// Quality There are no bound infeasibilities.

最適值

= 0

= 4

= 45.5

= 2.2

= 0.2

- // There are no reduced-cost infeasibilities.
- // Maximum Ax-b residual = 0
- // Maximum c-B'pi residual
- // Maximum |x|
- // Maximum slack
- // Maximum |pi|
- // Maximum |red-cost|

// Condition number of unscaled basis = 1.2e+01
//

```
x = [0 \ 1 \ 45.5 \ 0 \ 34.5];
```

optimal solution 最適解

## 生産計画をたてる

 生産計画の最適化(例2)
 7種の材料 A, B, ..., G がある
 5種の製品 α, β, γ, δ, ε をつくる
 各材料の所有数, 各製品を1単位 作るのに必要な材料数, 利益は右表
 総利益最大の生産計画をたてよ

| 材料乀製品 | α | β | γ | δ | Е | 量         |
|-------|---|---|---|---|---|-----------|
| A     | 2 | 0 | 1 | 3 | 1 | 80        |
| В     | 3 | 1 | 0 | 3 | 1 | 75        |
| С     | 0 | 2 | 3 | 5 | 0 | <b>95</b> |
| D     | 3 | 2 | 0 | 1 | 2 | 70        |
| E     | 1 | 0 | 3 | 0 | 3 | 60        |
| F     | 0 | 3 | 0 | 2 | 4 | 80        |
| G     | 1 | 5 | 0 | 4 | 1 | 90        |
| 利益    | 8 | 7 | 3 | 9 | 6 |           |

- ▶ 線形最適化問題として定式化し、CPLEXで解く
  - ▶ モデルファイル[pp.mod]は共通なので、データファイル[ppex2.dat]を作り解く

## 栄養問題を解く

栄養問題の最適化(例1)
 4種の栄養素 A~D がある
 5種の食品 a~e がある
 各食品を1単位摂取すると
 得られる栄養素, コストは表の通り

| 栄養素\食品 | α         | β           | γ   | δ         | ε          | 必要量       |
|--------|-----------|-------------|-----|-----------|------------|-----------|
| A      | 2.5       | <b>0.</b> 7 | 1.3 | 3.1       | <i>4.1</i> | <b>70</b> |
| В      | 11        | 21          | 5   | 13        | 12         | 300       |
| С      | 0.6       | 4.2         | 2.5 | 5.1       | 0.8        | 50        |
| D      | 23        | 16          | 15  | 0         | 12         | 150       |
| コスト(円) | <i>52</i> | <b>64</b>   | 32  | <b>46</b> | <u>38</u>  |           |

▶ 摂取必要量を満たし、コスト最小となる各食品の摂取量を知りたい

▶ 最適化問題の定式化(係数表記)

▶ 摂取必要量を表す係数ベクトル b

➤ コストを表す係数ベクトル c

含有栄養素を表す係数行列 A

$$\begin{aligned} \mathbf{b} &= (b_1 \quad b_2 \quad b_3 \quad b_4) \\ &= (70 \quad 300 \quad 50 \quad 150) \\ \mathbf{c} &= (c_1 \quad c_2 \quad c_3 \quad c_4 \quad c_5) \\ &= (52 \quad 64 \quad 32 \quad 46 \quad 38) \\ A &= \begin{pmatrix} a_{11} \quad a_{12} \quad a_{13} \quad a_{14} \quad a_{15} \\ a_{21} \quad a_{22} \quad a_{23} \quad a_{24} \quad a_{25} \\ a_{31} \quad a_{32} \quad a_{33} \quad a_{34} \quad a_{35} \\ a_{41} \quad a_{42} \quad a_{43} \quad a_{44} \quad a_{45} \end{pmatrix} \\ &= \begin{pmatrix} 2.5 \quad 0.7 \quad 1.3 \quad 3.1 \quad 4.1 \\ 11 \quad 21 \quad 5 \quad 13 \quad 12 \\ 0.6 \quad 4.2 \quad 2.5 \quad 5.1 \quad 0.8 \\ 23 \quad 16 \quad 15 \quad 0 \quad 12 \end{pmatrix} \end{aligned}$$

## 栄養問題を解く

> 最適化問題の定式化(ベタ表記)

min.  $52x_1+64x_2+32x_3+46x_4+38x_5$ s. t.  $2.5x_1+0.7x_2+1.3x_3+3.1x_4+4.1x_5 \ge 70$   $11x_1+21x_2+5x_3+13x_4+12x_5 \ge 300$   $0.6x_1+4.2x_2+2.5x_3+5.1x_4+0.8x_5 \ge 50$   $23x_1+16x_2+15x_3+0x_4+12x_5 \ge 150$  $x_1, x_2, x_3, x_4, x_5 \ge 0$ 

$$\begin{array}{l} \boldsymbol{b} = (b_1 \quad b_2 \quad b_3 \quad b_4) \\ = (70 \quad 300 \quad 50 \quad 150) \\ \boldsymbol{c} = (c_1 \quad c_2 \quad c_3 \quad c_4 \quad c_5) \\ = (52 \quad 64 \quad 32 \quad 46 \quad 38) \\ A = \begin{pmatrix} a_{11} \quad a_{12} \quad a_{13} \quad a_{14} \quad a_{15} \\ a_{21} \quad a_{22} \quad a_{23} \quad a_{24} \quad a_{25} \\ a_{31} \quad a_{32} \quad a_{33} \quad a_{34} \quad a_{35} \\ a_{41} \quad a_{42} \quad a_{43} \quad a_{44} \quad a_{45} \end{pmatrix} \\ = \begin{pmatrix} 2.5 \quad 0.7 \quad 1.3 \quad 3.1 \quad 4.1 \\ 11 \quad 21 \quad 5 \quad 13 \quad 12 \\ 0.6 \quad 4.2 \quad 2.5 \quad 5.1 \quad 0.8 \\ 23 \quad 16 \quad 15 \quad 0 \quad 12 \end{pmatrix}$$

→最適化問題の定式化(Σ表記)

$$\min \sum_{j=1}^{5} c_{j} x_{j}$$
  
s. t.  $\sum_{j=1}^{5} a_{ij} x_{j} \ge b_{i} (i = 1, ..., 4)$   
 $x_{j} \ge 0 \ (j = 1, ..., 5)$ 

#### ▶ 新規プロジェクトの作成

- ① [ファイル(F)]-[新規(N)]-[OPLプロジェクト]を選択
- ② [プロジェクト名]を記入(例:Nutrients)し、3カ所にチェックする

☑ デフォルトの実行構成の追加

- ✔ モデルの作成
- 🖌 データの作成

③ [終了]をクリック

プロジェクト名は自由だが、半角 英数で何の問題を解こうとしてい るのかが分かる名前が良い

▶ プロジェクト内のいくつかの名前を変更

- ✓ [構成1] → [config1] ※日本語を英語に変更しないと実行時エラーになる
- ✓ モデルファイル [Nutrients.mod] → [nt.mod]
- ✓ データファイル [Nutrients.dat] → [ntex1.dat]

> モデルファイル・データファイルを記述し保存(次ページ参照)

▶ [config1]にモデルファイルとデータファイルをセットする

➢ nt.mod

```
int i_max = ...;// 栄養素数
int j max = ...;// 食品数
range I = 1..i_max;// 栄養素集合の範囲
range J = 1..j_max;// 食品集合の範囲
float a[I,J] = ...;// 各食品1単位あたりの栄養素含有量
float c[J] = ...;// 各食品1単位あたりの摂取カロリー
float b[I] = ...;// 各栄養素の摂取必要量
dvar float+ x[J];// 食品j の摂取量(非負)
minimize
 sum(j in J) c[j]*x[j];
subject to {
 forall(i in I) {
   sum(j in J) a[i,j]*x[j] >= b[i];
 }
}
```

#### http://www.international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.com/international.co

```
i_max = 4;
j_max = 5;
C = [52 64 32 46 38];
b = [70 300 50 150];
a = [
[2.5 0.7 1.3 3.1 4.1]
[11 21 5 13 12]
[0.6 4.2 2.5 5.1 0.8]
[23 16 15 0 12]
];
```

#### ▶ 計算結果の確認(「解」タブの中身)

最適值

// solution (optimal) with objective 960.810287123481 // Quality There are no bound infeasibilities. // There are no reduced-cost infeasibilities. // Max. unscaled (scaled) Ax-b resid. // Max. unscaled (scaled) c-B'pi resid. // Max. unscaled (scaled) |x| // Max. unscaled (scaled) |slack| // Max. unscaled (scaled) |pi| // Max. unscaled (scaled) |red-cost // Condition number of scaled basis 11

 $x = [0 \ 4.1148 \ 0 \ 4.365 \ 13.07];$ 



- = 2.84217e 14 (1.77636e 15)
- = 7.10543e-15 (7.10543e-15)
- = 13.0703 (13.0703)
- = 72.681 (4.54256)
- = 2.72066 (43.5306)
- = 18.6449 (26.8182)
- = 6.6e+00

### 栄養問題を解く

#### 关義問題の最適化(例2) ※データはExcelファイル

> 18種の栄養素がある

> 23種の食品がある

▶ 各食品を1単位摂取すると得られる栄養素, カロリーはデータ表の通り

▶ 摂取必要量を満たし、コスト最小の食品摂取量を求めよ

▶ 線形最適化問題として定式化し, CPLEXで解く

▶ モデルファイル[nt.mod]は共通なので、データファイル[ntex2.dat]を作り解く

## 多品種輸送問題を解く

#### > 多品種輸送問題の最適化(例1)

▶ 3つの工場で4種の製品A,B,C,Dを作っている. ただし, 工場1はBとD, 工場 2はA,B,C, 工場3はB,C,D のみを生産できる

> 各工場の生産可能量は製品の種類に関係なく、それぞれ最大3000個

▶ 5人の顧客に必要量を輸送する. 輸送コスト最小となる輸送計画をたてたい

| < | く各工場で生産可能な製品と合計生産可能量> |    |    |    |    |           |  |   |  |  |
|---|-----------------------|----|----|----|----|-----------|--|---|--|--|
|   | 工場乀製品                 | A  | B  | С  | D  | 生産<br>可能量 |  | 雇 |  |  |
|   | 1                     | _  | OK | _  | OK | 3000      |  |   |  |  |
|   | 2                     | OK | OK | OK |    | 3000      |  |   |  |  |
|   | 3                     | —  | OK | OK | OK | 3000      |  |   |  |  |

く製品1単位あたり輸送コストと需要>

|    | 工場 | 輸送コ | スト | 製品需要 |           |     |   |  |
|----|----|-----|----|------|-----------|-----|---|--|
| 顧客 | 1  | 2   | 3  | A    | B         | С   | D |  |
| α  | 4  | 6   | 9  | 80   | 85        | 300 | 6 |  |
| β  | 5  | 4   | 7  | 270  | 160       | 400 | 7 |  |
| γ  | 6  | 3   | 4  | 250  | 130       | 350 | 4 |  |
| δ  | 8  | 5   | 3  | 160  | 60        | 200 | 3 |  |
| З  | 10 | 8   | 4  | 180  | <i>40</i> | 150 | 5 |  |

▶ 最適化問題の定式化(変数/係数)

- ▶ 変数x<sub>iik</sub>: <u>工場i→顧客iの製品k輸送量</u>
- > 生産可能量の係数ベクトル b
- ▶ 輸送コストを表す係数行列 C

▶ 需要を表す係数行列 D

$$\begin{split} & \textbf{S} \mbox{a} \mbox{a} \mbox{b} \mbox{a} \mbox{b} \mbox{a} \mbox{b} \mbox{a} \mbox{b} \mbox{a} \$$

3000)

 $d_{14}$ 

*d*<sub>24</sub>

*d*<sub>34</sub>

*d*<sub>44</sub>

*d*<sub>54</sub>/ 6 7

4

3

*m*<sub>13</sub>

 $m_{33}$ 

U

 $5/m_{14}$ 

 $m_{24}$ 

 $m_{34}$ 

#### ▶ 新規プロジェクトの作成

- ① [ファイル(F)]-[新規(N)]-[OPLプロジェクト]を選択
- ② [プロジェクト名]を記入(例: MultiTransport)し、3カ所にチェックする

☑ デフォルトの実行構成の追加

- ✔ モデルの作成
- ☑ データの作成

③ [終了]をクリック

プロジェクト名は自由だが、半角 英数で何の問題を解こうとしてい るのかが分かる名前が良い

> プロジェクト内のいくつかの名前を変更

- ✓ [構成1] → [config1] ※日本語を英語に変更しないと実行時エラーになる
- ✓ モデルファイル [MultiTransport.mod] → [mt.mod]
- ✓ データファイル [MultiTransport.dat] → [mtex1.dat]

モデルファイル・データファイルを記述し保存(次ページ参照)
 [config1]にモデルファイルとデータファイルをセットする

➢ mt.mod

```
int i_max = ...;// 顧客数
int j max = ...;// 工場数
int k max = ...;// 製品数
range I = 1..i_max;// 顧客集合の範囲
range J = 1..j_max;// 工場集合の範囲
range K = 1..k_max;// 製品集合の範囲
int c[I,J] = ...; // 工場 j → 顧客 i への製品1単位あたり輸送コスト
int d[I,K] = ...; // 顧客 i の 製品 k の需要量
int b[J] = ...; // 工場 j の生産可能合計量
int m[J,K] = ...; // 工場 j の 製品 k の生産有無を表す係数行列
dvar float+ x[I,J,K];// 工場 j → 顧客 i への 製品 k の輸送量(非負)
minimize
 sum(i in I) sum(j in J) sum(k in K) c[i,j]*x[i,j,k];
subject to {
 forall(i in I) {
   forall(k in K) {
     sum(j in J) x[i,j,k] == d[i,k];
   }
  }
 forall(j in J) {
   sum(i in I) sum(k in K) x[i,j,k] <= b[j];</pre>
   sum(i in I) sum(k in K) m[j,k]*x[i,j,k] == 0;
```

```
> mtex1.dat i_max = 5;
```

```
j_max = 3;
k_max = 4;
b = [3000 3000 3000];
C =
[4 6 9]
[5 4 7]
[6 3 4]
[8 5 3]
[10 8 4]
];
d = [
[ 80 85 300 6]
[270 160 400 7]
[250 130 350 4]
[160 60 200 3]
[180 40 150 5]
];
m = [
[1 0 1 0]
[0 0 0 1]
[1000]
];
```

| How to use CPLEX?                                                                              | 工場乀製品                 | A  | B          | С   | D   | 生産<br>可能量 |
|------------------------------------------------------------------------------------------------|-----------------------|----|------------|-----|-----|-----------|
|                                                                                                | 1                     | —  | OK         | —   | OK  | 3000      |
| ▶計算結果の確認([解]タブ) <sub>最適値</sub>                                                                 | 2                     | OK | OK         | OK  | —   | 3000      |
| <pre>// solution (optimal) with objective 12014</pre>                                          | 3                     | —  | OK         | OK  | OK  | 3000      |
| <pre>// Quality There are no bound infeasibilities.</pre>                                      |                       |    |            |     |     |           |
| <pre>// There are no reduced-cost infeasibilities.</pre>                                       |                       |    |            |     |     |           |
| <pre>// Maximum Ax-b residual = 0</pre>                                                        |                       |    |            |     |     |           |
| // Maximum c-B'pi residual = 0                                                                 |                       |    |            |     |     |           |
| // Maximum  x  = 400                                                                           |                       |    |            |     |     |           |
| // Maximum  slack  = 2902                                                                      |                       |    |            |     |     |           |
| $// Maximum   pq_cost  = 0$                                                                    |                       |    |            |     |     |           |
| // Condition number of unscaled basis = $1.4e+02$                                              |                       |    |            |     |     |           |
| x = [[ 0 85 0 6] L B B S B B B B B S B B B B S B B B B S B B B S B B B B S B B B B B B B B B B |                       |    |            |     |     |           |
| [ 80 0 300 0] … <b>工場2(A=80,C=3</b> 0                                                          | <mark>。)</mark> と顧客αへ |    |            |     |     |           |
| [ 0 0 0 0]] …工場3(0) 「 」の輸送の輸送                                                                  |                       |    |            |     |     |           |
| [[ 0 0 0 7]                                                                                    | 製品需要                  |    |            |     |     |           |
| [270 160 400 0]                                                                                | j                     | 顧客 | A          | B   | С   | D         |
|                                                                                                |                       | a  | 80         | 85  | 300 | 6         |
| Solution [250 130 350 0]                                                                       |                       | a  | 00         | 00  | 500 | -         |
| <b>最適解</b> [ 0 0 0 4]]                                                                         |                       | β  | <i>270</i> | 160 | 400 | 7         |
| [[ 0 0 0 0]]                                                                                   |                       | γ  | 250        | 130 | 350 | 4         |
|                                                                                                |                       | 8  | 160        | 60  | 200 | 3         |
|                                                                                                |                       |    | 100        | 00  | 200 | 5         |
|                                                                                                |                       | 3  | 180        | 40  | 150 | 5         |
| [ 0 40 150 5]]];                                                                               |                       |    |            |     |     |           |

## 多品種輸送問題を解く

- > 多品種輸送問題の最適化(例2) ※データはExcelファイル
  - ▶ 〇つの工場で△種の製品を作っている. ただし, 各工場で生産できる製品の種類は異なる
  - ▶ 各工場の生産可能量は製品の種類に関係なく、それぞれ最大◇個
  - ▶ □人の顧客に必要量を輸送する. 輸送コスト最小となる輸送計画をたてよ

- ➢線形最適化問題として定式化し、CPLEXで解く
  - ▶ モデルファイル[mt.mod]は共通なので、データファイル[mtex2.dat]を作り解く