線形整数最適化

『Excelソルバーではじめる最適化』 セッション3

堀田敬介

文教大学 経営学部

2024年2月3日(土)

本セミナーの構成

- 1. 数理最適化とソルバー(後藤)
- 2. Excel ソルバー入門 (堀田)
- 3. 線形整数最適化(堀田)
- 4. ロバスト最適化(後藤)
- 5. VBA を使って便利にする(後藤)
- 6. データ包絡分析法(後藤)
- Excelから次のステップへ(後藤)
- 閉会 (閉会後 個別相談・質問コーナー)

Outline

1. 線形整数最適化

2. シフト計画

3. 安定集合

4. グラフ彩色

5. スポーツスケジューリング

•線形整数最適化問題(Linear Integer Optimization Problem)

整数最適化 IP

min. $c^t z$

s.t. $Az \leq b$

 $z \ge 0$

 $z \in Z$

min. $c^t z + d^t x$

s.t. $Az + Ex \le b$

 $z, x \geq 0$

 $z \in Z, x \in R$

混合整数最適化 MIP

0-1整数最適化 0-1IP

min. $c^t z$

s.t. $Az \leq b$

 $z \ge 0$

 $z \in \{0,1\}$

min. $c^t z + d^t x$

s.t. $Az + Ex \le b$

 $z, x \geq 0$

 $z \in \{0,1\}, x \in R$

0-1混合整数最適化 0-1MIP

• 整数最適化問題(Integer Optimization Problem; IP)

min.
$$2x_1 + x_2 + 2x_3 + x_4 + 3x_5$$

s.t. $x_1 + 2x_3 + x_5 \ge 5$
 $9x_1 + 2x_2 + x_4 + 4x_5 \ge 1$
 $x_2 + 5x_3 + x_5 \ge 3$
 $x_1 + 3x_3 + x_5 \ge 2$
 $x_1, x_2, x_3, x_4, x_5 \ge 0$
 $x_1, x_2, x_3, x_4, x_5 \in Z$

• 整数最適化問題をExcelシートに記述

$$min. c^{T}x$$

$$s. t. Ax \ge b$$

$$x \ge 0$$

$$x \in Z$$

$$c^{T} = (2 \quad 1 \quad 2 \quad 1 \quad 3)$$

$$- (1 \quad 0 \quad 2 \quad 0 \quad 1)$$

$$9 \quad 2 \quad 0 \quad 1 \quad 4$$

$$0 \quad 1 \quad 5 \quad 0 \quad 1$$

$$1 \quad 0 \quad 3 \quad 0 \quad 1$$

$$b = \begin{pmatrix} 5\\1\\3\\2 \end{pmatrix}$$

	Α	В	С	D	Ε	F	G	Н	- 1	J	K	L	M	N	0	Р	Q
1	1.	P を解	¥<														
2			x_1	x_2	x 3	x 4	x 5										
3																	
4									obj. fn								
5		min	2	1	2	1	3	=	0				[15]	= SUN	/PROD	OUCT(C\$3	:G\$3, C5:G5)
6		s.t.	1	0	2	0	1	=	0	\cong	5			→[I5]	をコピ	ーし, [16:19]へ貼り付け
7			9	2	0	1	4	=	0	$\stackrel{\wedge}{=}$	1						
8			0	1	5	0	1	=	0	\cong	3						
9			1	0	3	0	1	=	0	\cong	2						
10									LHS		RHS						

• 整数最適化問題: ソルバーの設定 ソルバーの設定が 全て終了した所 G K ソルバーのパラメーター 1. IP を解く x_3 x_4 $x_1 \mid x_2 \mid$ X 5 目的セルの設定:(T) 1 \$1\$5 目標値: ○ 最大値(M) ○ 最小値(N ○ 指定値:(V) 0 obj. fii 1 3 変数セルの変更:(B) min \$C\$3:\$G\$3 s.t. 制約条件の対象:(U) \$C\$3:\$G\$3 = 整数 追加(A) C\$3:\$G\$3 >= 0\$I\$6:\$I\$9 >= \$K\$6:\$K\$9 変更(C) 10 RHS LHS 制約条件の変更 削除(D) 整数条件 制約条件:(N) セル参照:(E) すべてリセット(R) 整数 \$C\$3:\$G\$3 読み込み/保存(L) 制約のない変数を非負数にする(K) <u>0</u>K キャンセル(C) [int]を選ぶ 解決方法の選択: シンプレックス LP オプション(P) dif [シンプレックスLP]を選ぶ 制約条件の変更 非負条件 セル参照:(E) 制約条件:(N) **1** [解決]ボタンを押すと求解を開始 \$C\$3:\$G\$3

• 整数最適化問題:結果

A	Α	В	С	D	Ε	F	G	Н	I	J	K	L
1	1.	Pを角	¥<									
2			x 1	x 2	x 3	x 4	x 5					
3			1	0	2	0	0					
4									obj. fn			
5		min	2	1	2	1	3	=	6			
6		s.t.	1	0	2	0	1	=	5	\geq	5	
7			9	2	0	1	4	=	9	\geq	1	
8			0	1	5	0	1	=	10	\geq	3	
9			1	0	3	0	1	=	7	\geq	2	
10									LHS		RHS	

【参考】Python-MIP で解く

from mip.model import *

x[4] = 0.0

記述1:係数設定

記述2:定式化と求解

```
A = [[1, 0, 2, 0, 1],
       [9, 2, 0, 1, 4],
       [0, 1, 5, 0, 1],
       [1, 0, 3, 0, 1]]
    J = range(len(c))
    I = range(len(b))
  ※"I" = Integer(整数)
  整数変数とするということ
#変数宣言:モデル m に変数を追加
  実行すると、結果を表示
```

b = [5, 1, 3, 2]

定式化 最適解 最適値 の表示

```
m = Model("IPex1") # モデルの設定:線形整数最適化
x = [m.add_var(var_type="I", 1b=0) for j in J]
m.objective = minimize(xsum(c[j] * x[j] for j in J)) # 目的関数の設定:モデル m に目的関数を追加
for i in I:
 m += xsum(A[i][j] * x[j] for j in J) >= b[i]
                                         # 制約条件の設定:モデル # に制約条件を追加
m.optimize() # 最適化(求解)の実行
if m.status.value==D: # もし,最適解が求まったなら
 print("最谪解:")
                  # 最適解を表示
 for j in J:
   print(" x[",j,"] = ", x[j].x)
 print("最適値:", m.objective_value, "=", m.objective) # 目的関数値を表示
                  # もし、最適解が求まらなかったなら
 print("error:最適解は求まりませんでした") # エラーメッセージを表示
最適解:
```

最適値: 6.0 = + 2.0var(0) + var(1) + 2.0var(2) + var(3) + 3.0var(4)

• 0-1整数最適化問題(0-1IP)

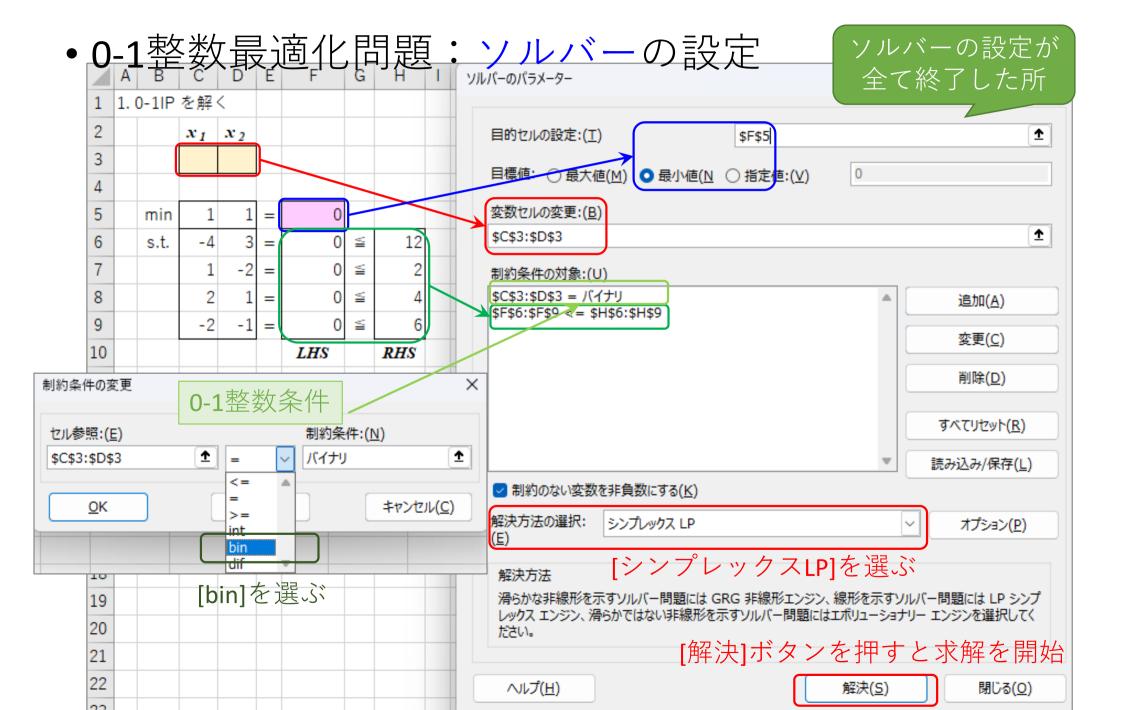
min.
$$x_1 + x_2$$

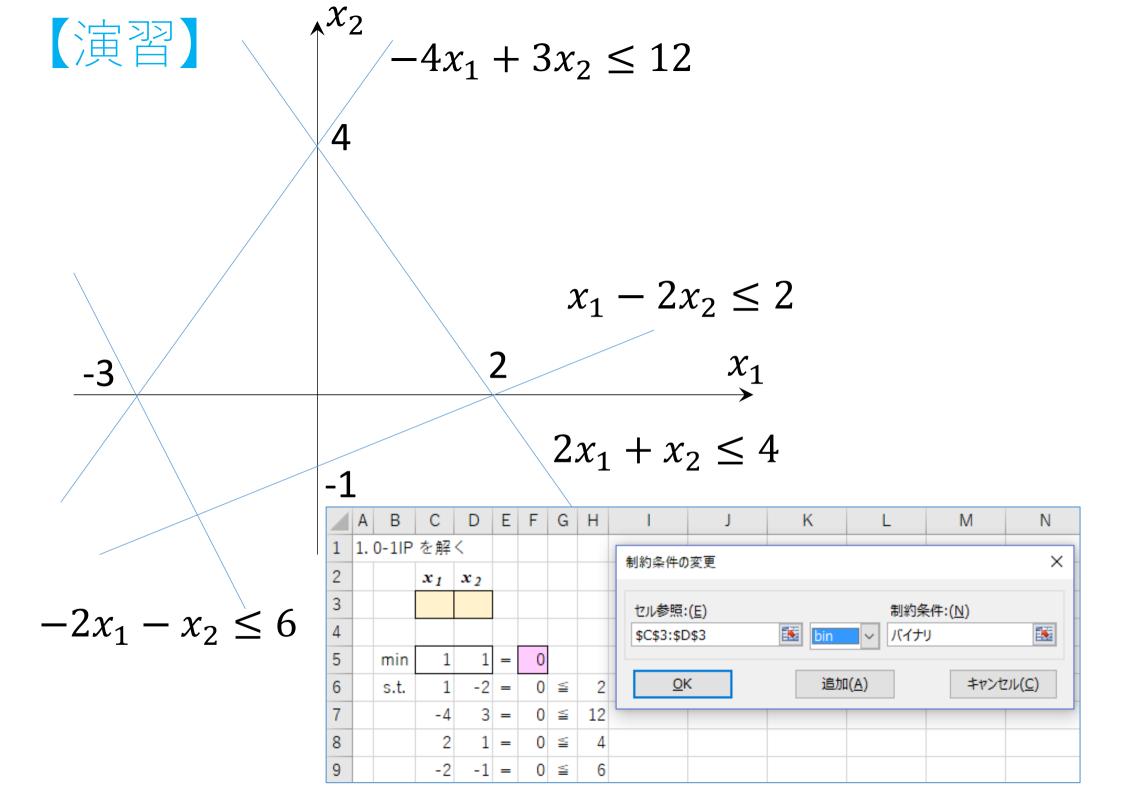
s.t. $-4x_1 + 3x_2 \le 12$
 $x_1 - 2x_2 \le 2$
 $2x_1 + x_2 \le 4$
 $-2x_1 - x_2 \le 6$
 $x_1, x_2 \ge 0$,
 $x_1, x_2 \in \{0,1\}$

• 0-1整数最適化問題をExcelシートに記述

$$min. c^{T}x$$

$$s. t. Ax \le b$$


$$x \ge 0$$


$$x \in \{0,1\}$$

$$c^{T} = (1 \quad 1)$$

$$A = \begin{pmatrix} -4 & 3 \\ 1 & -2 \\ 2 & 1 \\ -2 & -1 \end{pmatrix}, b = \begin{pmatrix} 12 \\ 2 \\ 4 \\ 6 \end{pmatrix}$$

	Α	В	С	D	Ε	F	G	Н	Τ	J	K	L	M	N	
1	1. (0-1IP	を解	<											
2			x_1	x 2											
3															
4															
5		min	1	1	=	0				[F5]	= SUN	/PROD	OUCT(C\$3	:D\$3, C5:D	5)
6		s.t.	-4	3	=	0	VII	12			→[F5]	をコビ	ーし, [F6:	F9]へ貼り	付け
7			1	-2	=	0	VII	2							
8			2	1	=	0	VIII	4							
9			-2	-1	=	0	VIII	6							
10						LHS		RHS							

シフト計画

曜日	月	火	水	木	金	土	日
総必要人数	8	6	3	5	7	4	9
正社員必要数	2	2	2	2	2	2	2

従業員のシフト計画をたてる. 1週間各曜日の必要人数は右上表の通り 正社員は連続5日で働き(休日2日),非正規社員は連続3日で働く(休日4日) 正社員は5人いて,全曜日において正社員は2名以上必要である 一定期間同じシフトを使う. 非正規社員雇用数を最小にするシフト計画をたてよ

曜日	月	火	水	木	金	土	H
総必要人数	8	6	3	5	7	4	9
正社員必要数	2	2	2	2	2	2	2

【係数・変数設定】

- ightharpoonup 各曜日 i = 1,2,...,7 (1=月曜日, 2=火曜日, ..., 7=日曜日)
- ightharpoonup 曜日iの正社員必要人数: c_i
- ▶ 曜日 i の全必要人数: d_i
- ightharpoonup 曜日iの正社員のシフトパターン $j:A_{ij}$
- \blacktriangleright 曜日iの非正規正社員のシフトパター $\check{\hspace{0.2cm}}\hspace{0.2cm} j:B_{ii}$
- ightharpoonup 整数変数 x_i : パターンjで仕事する正社員数(j=1,2,...,7)
- \triangleright 整数変数 $\hat{y_j}$: パターンjで仕事する非正規社員数(j=1,2,...,7)

【定式化】

min.
$$y_1 + y_2 + \dots + y_7$$

s.t. $x_1 + x_2 + \dots + x_7 = 5$
 $Ax \ge c$
 $Ax + By \ge d$
 $x_j, y_j \in Z \quad (j = 1, \dots, 7)$

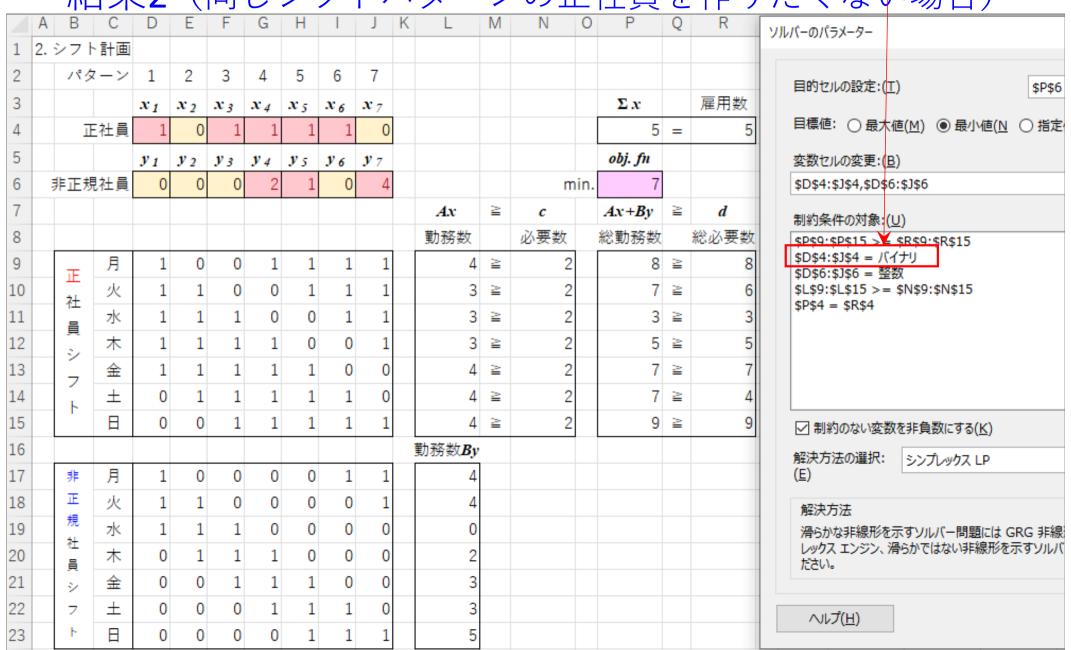
• シフト計画をExcelシートに記述

	Α	В	С	D	Е	F	G	Н	-1	J	K	L	М	N	0	Р	Q	R	S	Т	U	V	W	X
1	2. 3	シフト	計画																					
2		パタ	ーン	1	2	3	4	5	6	7														
3				x 1	x 2	x 3	x 4	x 5	x 6	x 7						Σx		雇用数						
4		Ī	社員														=	5		[P4]	= SUM(D	4:J4)		
5				<i>y</i> 1	<i>y</i> ₂	<i>y</i> 3	y 4	y 5	<i>y</i> 6	y 7						obj. fu					→[P4]を=	コピーし,	[P6]へ貼り1	寸け
6	ŧ	非正規	社員											m	in.									
7												Ax	≧	c		Ax+By	≧	d						
8												勤務数		必要数		総勤務数		総必要数						
9		正	月	1	0	0	1	1	1	1			≧	2			≧	8		[L9]	= SUMPR	ODUCT()\$4:J\$4, D9	:J9)
10		社	火	1	1	0	0	1	1	1			≧	2			≧	6			→[L9]を=	コピーし, [L10:L15]へ	貼り付け
11		員	水	1	1	1	0	0	1	1			≧	2			≧	3		[L17]	= SUMPR	ODUCT([)\$6:J\$6, D1	7:J17)
12		シ	木	1	1	1	1	0	0	1			≧	2			≧	5			→[L17]を	コピーし,	[L18:L23]^	、貼り付け
13		7	金	1	1	1	1	1	0	0			\geqq	2			\geqq	7		[P9]	= L9 + L1	7		
14		,	\pm	0	1	1	1	1	1	0			\geqq	2			\geqq	4			→[P9]を=	コピーし,	[P10:P15]^	貼り付け
15			日	0	0	1	1	1	1	1			≧	2			\geqq	9						
16												勤務数 <i>By</i>												
17		非	月	1	0	0	0	0	1	1														
18		正	火	1	1	0	0	0	0	1														
19		規 社	水	1	1		0	0	0	0														
20		員	木	0			1																	
21		シ	金	0	0	1	1	1	0	0														
22		フ	土	0	0	0	1	1	1	0														
23		٢	B	0	0	0	0	1	1	1														

シフト計画:ソルバーの設定

							_	•				<u> </u>	U _	/ 口义 人	_				
	А	В	С	D	E	F	G	Н	I	J	K	L	M	N	0	Р	Q	R	ソルバーのパラメーター
1	2. 3	シフト	計画																
2		パタ	ーン	1	2	3	4	5	6	7									目的セルの設定:(<u>T</u>) \$P\$6
3				x_1	x 2	x 3	x 4	x 5	x 6	x 7						Σx		雇用数	\$P\$0
4		ΙĒ	社員													0	=	5	目標値: ○ 最大値(<u>M</u>) ○ 最小値(<u>N</u> ○ 指定
5				y 1	<i>y</i> ₂	y 3	y 4	y 5	<i>y</i> 6	y 7						obj. fu			変数セルの変更:(<u>B</u>)
6	ŧ	非正規	社員											m	in.	0			\$D\$4:\$J\$4,\$D\$6:\$J\$6
7												Ax	≧	c		Ax+By	≧	d	制約条件の対象:(<u>U</u>)
8												勤務数		必要数		総勤務数		総必要数	\$D\$6:\$J\$6 = 整数
9		正	月	1	0	0	1	1	1	1		0	\geq	2		0	\geqq	8	\$P\$9:\$P\$15 >= \$R\$9:\$R\$15 \$L\$9:\$L\$15 >= \$N\$9:\$N\$15
10		社	火	1	1	0	0	1	1	1		0	\geqq	2		0	≧	6	\$D\$4:\$J\$4 = 整数
11			水	1	1	1	0	0	1	1		0	\geqq	2		0	≧	3	\$P\$4 = \$R\$4
12		シ	木	1	1	1	1	0	0	1		0	≧	2		0	≧	5	
13		7	金	1	1	1	1	1	0	0		0	\geqq	2		0	≧	7	
14		,	<u>±</u>	0	1	1	1	1	1	0		0	≧	2		0	≧	4	
15		'	日	0	0	1	1	1	1	1		0	\geqq	2		0	≧	9	✓ 制約のない変数を非負数にする(K)
16												勤務数89							解決方法の選択: シンプレックス LP
17		非	月	1	0	0	0	0	1	1		0							(E)
18		Œ	火	1	1	0	0	0	0	1		0							解決方法
19		規 社	水	1	1	1	0	0	0	0		0							滑らかな非線形を示すソルバー問題には GRG 非線
20		員	木	0	1	1	1	0	0	0		0							レックス エンジン、滑らかではない非線形を示すソルバ ださい。
21		シ	金	0	0	1	1	1	0	0		0							
22		フ	±	0	0	0	1	1	1	0		0							ヘルプ(<u>H</u>)
23		٢	日	0	0	0	0	1	1	1		0							VF ()

ソルバーの設定が


全て終了した所

• 結果

	Α	В	С	D	Ε	F	G	Н	I	J	K	L	M	N	0	Р	Q	R
1	2.	シフト	計画															
2		パク	ィーン	1	2	3	4	5	6	7								
3				x_1	x 2	x 3	X 4	x 5	x 6	x 7						Σx		雇用数
4		I	社員	2	0	1	2	0	0	0						5	=	5
5				<i>y</i> 1	<i>y</i> ₂	<i>y</i> 3	y 4	y 5	<i>y</i> 6	y 7						obj. fn		
6	3	非正規	社員	0	0	0	0	2	0	4				m	in.	6		
7												Ax	\geqq	c		Ax+By	\geqq	d
8												勤務数		必要数		総勤務数		総必要数
9		正	月	1	0	0	1	1	1	1		4	≧	2		8	≧	8
10		社	火	1	1	0	0	1	1	1		2	≧	2		6	≧	6
11			水	1	1	1	0	0	1	1		3	≧	2		3	≧	3
12		シ	木	1	1	1	1	0	0	1		5	≧	2		5	≧	5
13		フ	金	1	1	1	1	1	0	0		5	≧	2		7	≧	7
14		, -	±	0	1	1	1	1	1	0		3	≧	2		5	\geqq	4
15			日	0	0	1	1	1	1	1		3	\geq	2		9	\geqq	9
16												勤務数 <i>By</i>						
17		非	月	1	0	0	0	0	1	1		4						
18		正	火	1	1	0	0	0	0	1		4						
19		規 社	水	1	1	1	0	0	0	0		0						
20		員	木	0	1	1	1	0	0	0		0						
21		シ	金	0	0	1	1	1	0	0		2						
22		フ	±	0	0	0	1	1	1	0		2						
23		1	日	0	0	0	0	1	1	1		6						

正社員のシフトパターン変数xを [整数] \rightarrow [バイナリ]に変更して解けば良い

• 結果2 (同じシフトパターンの正社員を作りたくない場合)

【参考】Pythor

• 記述1:係数設定

・ 記述2: 定式化と求解

```
I, J = range(len(c)),range(7) # I:曜日, J:シフトバタ
m = Model("ShiftEx1") # モデルの設定:シフト計画
                                                                           最適解:
「x = [m.add var(var type="I", lb=0) for i in J] # 変数:各シフトバターンの正社員数
y = [m.add var(var type="I", lb=0) for j in J] # 変数:各シフトバターンの非正規社員数
                                                                               1 ] = 0.0
m.objective = minimize(xsum(y[i] for j in J)) # 目的関数:雇用する非正規社員数の最小化
m += xsum(x[j] for j in J) == num
                                    # 制約1:雇用正社員数
                                                           定式化
for i in I:
                                                                                    1.0
 m += xsum(A[i][j]*x[j] for j in J) >= c[i] # 制約2:各曜日必要数(正社員)
                                                                            x[5] = 0.0
 m += xsum(A[i][j]*x[j]+B[i][j]*y[j] for j in J) >= d[i] # 制約3:各曜日必要数
                                                                            x[6] = 1.0 | v[6] = 3.0
                                                                           最適値: 6.0 = + var(7) + var(8) + var(9) + var
            # 最適化(求解)の実行
m.optimize()
                                                                           月 勤務数(正社員): 5.0 >= 2 , 勤務数: 8.0 >= 8
                                                           最適解
                                                                           火 勤務数(正社員): 3.0 >= 2 , 勤務数: 6.0 >= 6
|if m.status.value==0: # もし、最適解が求まったなら
                                                                           水 勤務数(正計員): 2.0 >= 2 , 勤務数: 3.0 >= 3
 print("最適解:")
                  # 最適解を表示
                                                                           木 勤務数(正社員): 4.0 >= 2 , 勤務数: 5.0 >= 5
  for i in J:
                                                           最適値
                                                                           金 勤務数(正社員): 4.0 >= 2 , 勤務数: 7.0 >= 7
   print (" x[",j,"] = ", x[j].x, "| y[",j,"] = ",y[j].x)
                                                                           土 勤務数(正社員): 4.0 >= 2 , 勤務数: 6.0 >= 4
                                                           の表示
 print("最適値:", m.objective value, "=", m.objective) # 目的関数値を表示
                                                                           日 勤務数(正社員): 4.0 >= 2 , 勤務数: 9.0 >= 9
  for i in I:
   print(wk[i], "勤務数(正社員):", sum(A[i][j]*x[j].x for j in J), ">=", c[i], ", 勤務数:",sum(A[i][j]*x[j].x+B[i][j]*y[j].x for j in J), ">=", d[i])
                  # もし、最適解が求まらなかったなら
  print ("error:最適解は求まりませんでした") # エラーメッセージを表示
```

wk = ['月','火','水','木','金','土','日']

d = [8,6,3,5,7,4,9] # 各曜日必要人数

[1,1,0,0,1,1,1],

[1,1,1,0,0,1,1], [1,1,1,1,0,0,1], [1,1,1,1,1,0,0], [0,1,1,1,1,1,1], [0,0,1,1,1,1,1]]

[1,1,0,0,0,0,0,1], [1,1,1,0,0,0,0], [0,1,1,1,0,0,0], [0,0,1,1,1,0,0], [0,0,0,1,1,1,0],

[0,0,0,0,1,1,1]]

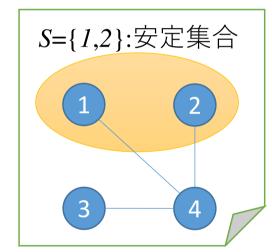
c = [2,2,2,2,2,2,2] + 各曜日必要人数(正社員)

A = [[1,0,0,1,1,1,1], #シフトバターン(正社員)

B = [[1,0,0,0,0,1,1], # シフトバターン(非正規計員)

雇用正計員数

• 最大安定集合問題 maximum stable set problem


無向グラフ
$$G = (V, E)$$
 $(V=\{1,2,...,n\})$

について、要素数が最大となる安定集合Sを求めなさい

※点の部分集合 $S(S\subseteq V)$ が 安定集合 $(stable\ set)$ $\Leftrightarrow S$ 内の任意の2点間に枝がない

【変数設定】

- ▶ 点集合 V= {1,2,...,n}

【定式化】

max.
$$x_1 + x_2 + \dots + x_n$$

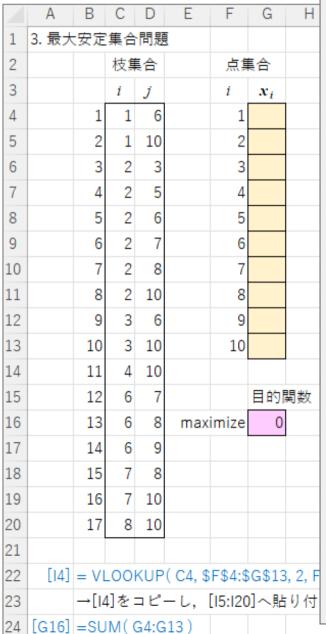
s.t. $x_i + x_j \le 1 \ (\forall (i,j) \in E)$
 $x_i \in \{0,1\} \ (\forall i \in V)$

• 例題:最大安定集合問題

10人の学生がいる

人数が最大の仲良しグループをつくれ

※学生を点とし、仲が悪い学生間に枝を張ると、最大安定集合問題となる

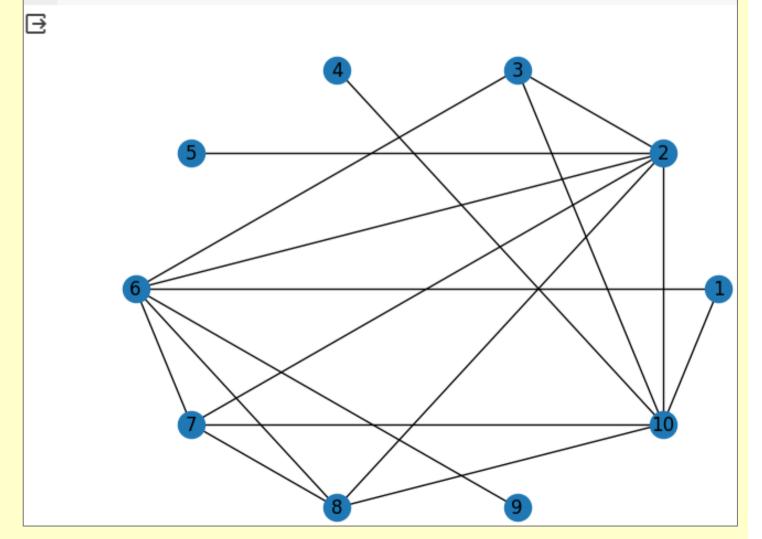

演習 Excel Solver で求解せよ

• 問題をExcelシートに記述

			\mathcal{N}					V <u></u>			<u>'</u>			
A	Α	В	С	D	Е	F	G	Н	I	J	K	L	M	N
1	3. 最大	安定	集合	問題	Į.									
2			枝集	合		点算	集合		制約					
3			i	j		i	x_i		$x_i +$	x_j \langle	<= 1			
4		1	1	6		1			0	\leq	1			
5		2	1	10		2			0	≦	1			
6		3	2	3		3			0	≦	1			
7		4	2	5		4			0	≦	1			
8		5	2	6		5			0	≦	1			
9		6	2	7		6			0	≦	1			
10		7	2	8		7			0	≦	1			
11		8	2	10		8			0	≦	1			
12		9	3	6		9			0	≦	1			
13		10	3	10		10			0	≦	1			
14		11	4	10					0	≦	1			
15		12	6	7			目的	関数	0	≦	1			
16		13	6	8	maxi	mize	0		0	≦	1			
17		14	6	9					0	≦	1			
18		15	7	8					0	≦	1			
19		16	7	10					0	≦	1			
20		17	8	10					0	≦	1			
21														
22	[14]	= VI	-001	KUP	(C4, \$	F\$4:9	G\$13	, 2, FA	LSE)	+ V	LOOK	KUP(D4, \$	F\$4:\$G\$13	3, 2, FALSE)
23		→[1]を:	コピ-	-し,[15:120)]へ貼	り付け	+					
24	[G16]	=SU	M((34:G	13)									

ソルバーの設定が 全て終了した所

• ソルバー設定


ソルバーのパラメーター
目的セルの設定:(T) \$G\$16 1
目標値: ● 最大値(<u>M</u>) ○ 最小値(<u>N</u> ○ 指定値:(<u>V</u>)
変数セルの変更:(<u>B</u>)
\$G\$4:\$G\$13
制約条件の対象:(<u>U</u>)
\$G\$4:\$G\$13 = バイナリ \$I\$4:\$I\$20 <= \$K\$4:\$K\$20
<u>変更(C)</u>
削除(<u>D</u>)
すべてリセット(<u>R</u>)
<u> </u>
✓ 制約のない変数を非負数にする(K)
解決方法の選択: シンプレックス LP マオプション(P)
解決方法 滑らかな非線形を示すソルバー問題には GRG 非線形エンジン、線形を示すソルバー問題には LP シンプレックス エンジン、滑らかではない非線形を示すソルバー問題にはエボリューショナリー エンジンを選択してください。
ヘルプ(<u>H</u>) 解決(<u>S</u>) 閉じる(<u>O</u>)

• 最大安定集合問題: 結果

	Α	В	С	D	Е	F	G	Н	1	J	K
1	3. 最大	安定	集合	問題							
2			枝集	合		点集	[合		制約		
3			i	j		i	x_i		$x_i +$	x_j	<= 1
4		1	1	6		1	1		1	≦	1
5		2	1	10		2	0		1	≦	1
6		3	2	3		3	1		1	≦	1
7		4	2	5		4	1		1	≦	1
8		5	2	6		5	1		0	≦	1
9		6	2	7		6	0		1	\leqq	1
10		7	2	8		7	1		0	\leq	1
11		8	2	10		8	0		0	\leq	1
12		9	3	6		9	1		1	\leq	1
13		10	3	10		10	0		1	\leq	1
14		11	4	10					1	\leq	1
15		12	6	7			目的	関数	1	\leq	1
16		13	6	8	max	imize	6		0	≦	1
17		14	6	9					1	≦	1
18		15	7	8					1	≦	1
19		16	7	10					1	≦	1
20		17	8	10					0	≦	1

【参考】Pyth

• 記述1:係数設定

【参考】Python-MIP で解く

・ 記述2: 定式化と求解

```
from mip.model import *
                                                         ※"B" = Binary(0-1整数)
            m = Model("StableEx2") # モデルの設定:安定集合
                                                         0-1整数変数とするということ
           x = [m.add var(var type="B") for v in V] # 0-1変数
            m.objective = maximize(xsum(x[v] for v in V)) # 目的関数:安定集合に含まれる点数
定式化
            for (i.i) in G.edges():
              m += x[i-1] + x[j-1] <= 1 # 制約: 枝(i,j)の両端点どちらか高々1点のみ安定集合へ
            m.optimize() # 最適化(求解)の実行
             if m.status.value==D: # もし,最適解が求まったなら
              optV = []
              print("最適解:") # 最適解を表示
最適解
              for v in V:
              if x[v].x==1:
                 optV.append(v+1)
最適値
                 print (" x[",v+1,"] = ", x[v].x)
の表示
              print("最適値:", m.objective_value, "=", m.objective) # 目的関数値を表示
                              # もし、最適解が求まらなかったなら
            else:
              print("error:最適解は求まりませんでした") # エラーメッセージを表示
            最谪解:
             x[1] = 1.0
            最適値: 6.0 = + var(0) + var(1) + var(2) + var(3) + var(4) + var(5) + var(6) + var(7) + var(8) + var(9)
```

【参考】Python-MIP で解く

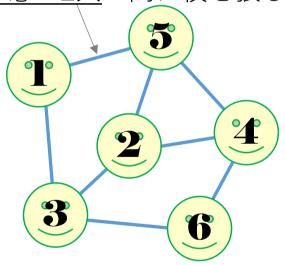
記述3:結果描画

GR = G.copy() #元のグラフ G を描写用グラフ GR ヘコピー GR.add_nodes_from(optV, color='red') # 安定集合に含まれる点の色を赤に vcol_dict = nx.get_node_attributes(GR, "color") vcol = [vcol_dict[v] if v in vcol_dict else 'lightgray' for v in GR.nodes()] # それ以外の点を灰色に nx.draw(GR, pos, with_labels=True, node_color=vcol) ⊡

4. グラフ彩色

グラフ彩色問題 graph coloring problem

グラフG=(V,E)の枝の両端点を異なる色に塗り,色数最小にする(自明解<math>=|V|) 例) 中の悪さが既知のn(=6)人を仲の良い人でクラス分けし、クラス数kを最小に


【変数設定】

- ▶ 点集合V, |V|=n, i = 1,2,...,n
- ▶ 枝集合E, e_{ii} ... (i, j) の仲が悪い

定式化

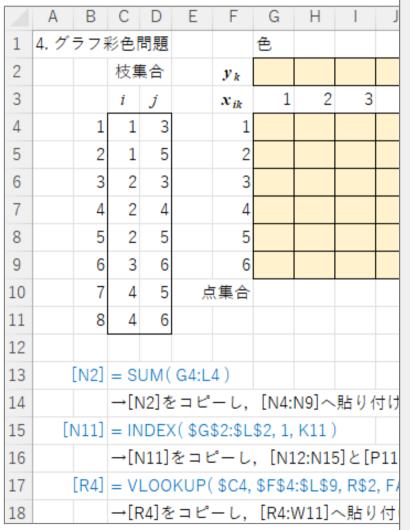
min.
$$\sum_{k=1}^{n} y_k$$

s. t. $\sum_{k=1}^{n} x_{ik} = 1 \ (\forall i \in V)$
 $x_{ik} + x_{jk} \le y_k \ (\forall (i,j) \in E, \forall k)$
 $y_k \ge y_{k+1} \ (k = 1..|V| - 1)$
 $x_{ik}, y_k \in \{0,1\} \ (\forall i \in V, \forall k)$

仲が悪い2人の間に枝を張る

※自明解は k = 6 (=|V|) (6人全員違うクラス)

4.グラフ彩色


問題をExcelシートに記述

	Α	В	С	D	Е	F	G	Н	- 1	J	K	L	M	N	0	Р	Q	R	S	Т	U	V	W
1	4. グ	ラフョ	彩色	問題			色							目的関	数								
2			枝負	合		y_k							min.	0				2	3	4	5	6	7
3			i	j		x_{ik}	1	2	3	4	5	6		Σ	x _{ik} =	=1		$x_i + x_j$	- y _k <=	0			
4		1	1	3		1								0	=	1		0	0	0	0	0	0
5		2	1	5		2								0	=	1		0	0	0	0	0	0
6		3	2	3		3								0	=	1		0	0	0	0	0	0
7		4	2	4		4								0	=	1		0	0	0	0	0	0
8		5	2	5		5								0	=	1		0	0	0	0	0	0
9		6	3	6		6								0	=	1		0	0	0	0	0	0
10		7	4	5	<u>, t</u>	集合								y_k	≧	<i>y</i> k+1		0	0	0	0	0	0
11		8	4	6							1		2	0	≧	0		0	0	0	0	0	0
12											2		3	0	All	0							
13		[N2]	= SI	JM(G4:L	4)					3		4	0	All	0							
14			→[N	12]を	コピ	ーし,	[N4:	N9]^	貼り作	けけ	4		5	0	All .	0							
15	1]	N11]	= 11	IDEX	((\$G	\$2:\$L	\$2, 1,	K11))		5		6	0	\geq	0							
16			→[N	N11]	をコヒ	ピーし	, [N1	2:N1	5]と[P	11:P1	5]^	占り付	けけ										
17		[R4]	= V	LOO	KUP(\$C4,	\$F\$4	:\$L\$9	9, R\$2	, FAL	SE)+	- VLC	OKUI	P(\$D4	, \$F	\$4:\$L\$	9, R	\$2, FAL	SE)-(G\$2			
18			→[F	74]を	コピ	ーし,	[R4:\	N11]	へ貼り	付け													

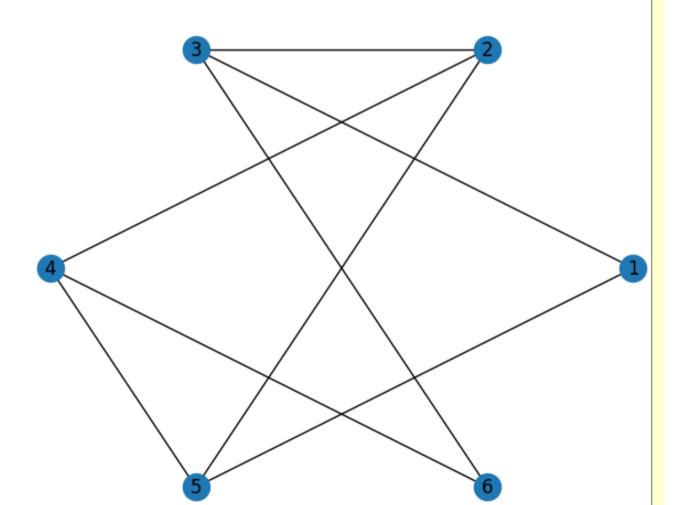
4. グラフ彩色

ソルバーの設定が 全て終了した所

• ソルバー設定

ハーのハラメーター				
目的セルの設定:(<u>T</u>)		\$N\$2		Î
目標値: ○ 最大値	E(M) ● 最小値(N	○ 指定値:(<u>V</u>)	0	
変数セルの変更:(<u>B</u>)				
\$G\$2:\$L\$2,\$G\$4:	\$L\$9			1
制約条件の対象:(<u>U</u>)			
\$G\$2:\$L\$2 = バイ \$G\$4:\$L\$9 = バイ	ナリ		^	追加(<u>A</u>)
\$N\$11:\$N\$15 >= \$N\$4:\$N\$9 = \$P\$ \$R\$4:\$W\$11 <=	\$4:\$P\$9			変更(<u>C</u>)
φιλφτ.φννφ11 <-	·			削除(<u>D</u>)
				すべてリセット(<u>R</u>)
				読み込み/保存(<u>L</u>)
☑ 制約のない変数を	を非負数にする(<u>K</u>)			
解決方法の選択: (E)	シンプレックス LP		~	オプション(<u>P</u>)
解決方法 滑らかな非線形を示				バー問題には LP シンプ Iー エンジンを選択してく
ヘルプ(<u>H</u>)			解決(<u>S</u>)	閉じる(<u>O</u>)

4. グラフ彩色


• グラフ彩色問題: 結果

	Α	В	С	D	Е	F	G	Н		J	K	L	M	N	0	Р	Q	R	S	Т	U	V	W
1	4. グ	ラフョ	彩色	問題			色							目的関	数								
2			枝	集合		y_k	1	1	1	0	0	0	min.	3				2	3	4	5	6	7
3			i	j		x_{ik}	1	2	3	4	5	6		Σ	x ik=	1		$x_i + x_j$	- y _k <=	0			
4		1	1	. 3		1	0	1	0	0	0	0		1	=	1		-1	0	0	0	0	0
5		2	1	5		2	0	1	0	0	0	0		1	=	1		0	0	-1	0	0	0
6		3	2	3		3	0	0	1	0	0	0		1	=	1		-1	0	0	0	0	0
7		4	2	4		4	0	0	1	0	0	0		1	=	1		-1	0	0	0	0	0
8		5	2	5		5	1	0	0	0	0	0		1	=	1		0	0	-1	0	0	0
9		6	3	6		6	0	1	0	0	0	0		1	=	1		-1	0	0	0	0	0
10		7	4	5	봈	集合								y_k	≧ :	<i>y</i> _{k+1}		0	-1	0	0	0	0
11		8	4	6							1		2	1	\cong	1		-1	0	0	0	0	0
12											2		3	1	≧	1							
13		[N2]	= S	UM(G4:L	4)					3		4	1	≧	0					5		
14			→[N2] á	ヒコピ	ーし,	[N4:	N9]^	貼り付	けけ	4		5	0	≧	0		0					
15	[]	V11]	= 11	(ADE	((\$G	\$2:\$L	\$2, 1,	K11)			5		6	0	≧	0							
																						0	0
																				2		-(4	E
																		C	3				
																						3	

【参考】Python-MIPで解く

• 記述1:係数設定

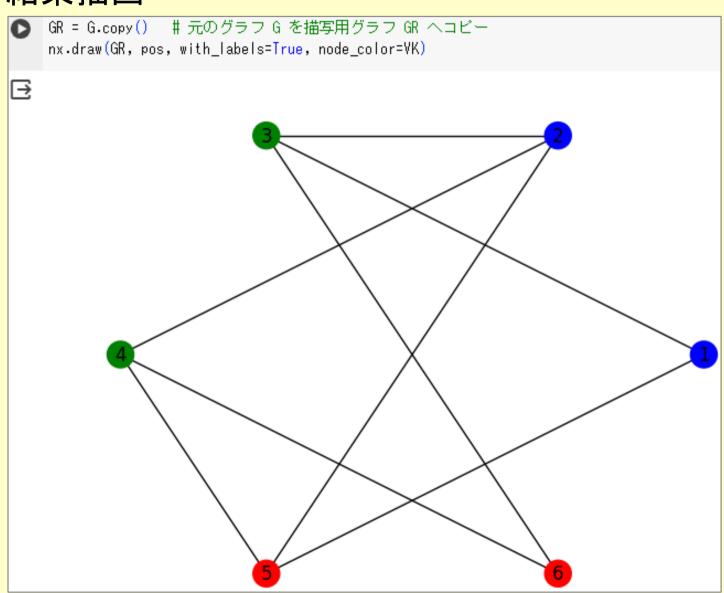
⊡

【参考】Python-MIP で解く

・ 記述2: 定式化と求解

定式化

最適解 と 最適値 の表示


最適値: 3.0 = + var(36) + var(37) + var(38) + var(39) + var(40) + var(41)

```
→ 最適解:
y[1]=1.0 x[5,1]=1.0 x[6,1]=1.0
y[2]=1.0 x[3,2]=1.0 x[4,2]=1.0
y[3]=1.0 x[1,3]=1.0 x[2,3]=1.0
```

```
▶ from mip.model import *
    m = Model("GraphColEx1") # モデルの設定:グラフ彩色
    x = [[m.add var(var type="B") for v in V] for k in K] # 0-1変数(VxK)
    y = [m.add var(var type="B") for k in K]
    m.objective = minimize(xsum(y[k] for k in K)) # 目的関数:使用色数最小
    for (i,i) in G.edges():
    for k in K:
       m += x[i-1][k] + x[i-1][k] <= y[k] # 制約1:枝(i,i)の両端点を異彩色
    for v in V:
     m += xsum(x[v][k] for k in K) == 1 # 制約2:各点v は1色で彩色
    for k in range (0, len(K)-1):
     m += y[k] >= y[k+1]
    m.optimize() # 最適化(求解)の実行
    if m.status.value==O: # もし, 最適解が求まったなら
     print("最適解:")
                       # 最適解を表示
     col list = ['r', 'g', 'b', 'c', 'm', 'y']
     VK = ['w']*len(V)
     for k in K:
       if y[k].x==1:
        print(" y[",k+1,"]=",y[k].x, end="")
       for v in V:
        if x[v][k].x==1:
          print (" x[",v+1,",",k+1,"]=", x[v][k].x, end="")
          VK[v] = col list[k]
       print()
     print("最適値:", m.objective value, "=", m.objective) # 目的関数値を表示
                        # もし、最適解が求まらなかったなら
    else:
     print("error:最適解は求まりませんでした") # エラーメッセージを表示
```

【参考】Python-MIP で解く

• 記述3:結果描画

5.スポーツスケジューリング

• スポーツスケジューリング sports scheduling

nチームの1重総当たり戦のスケジュールをつくる

全試合 Home vs Away で戦う

全チーム移動距離総和の最小化(※1slot毎Home-Away往復の場合は意味が無い)

【変数設定】

 \triangleright team集合 T, slot集合 S, 距離行列 $D = [d_{ij}]$

> 0-1変数 $x_{ijs} = \begin{cases} 1 \dots \text{slot } s \text{ で team } i \text{ vs } j \text{ (} i \text{ がHome}) \text{で戦う} \\ 0 \dots \text{slot } s \text{ で team } i \text{ vs } j \text{ (} i \text{ がHome}) \text{ で戦わない} \end{cases}$

(定式化)

$$min. \sum_{s \in S} \sum_{i \in T} \sum_{j \in T} 2d_{ij} x_{ijs}$$

$$s.t. \sum_{i \in T/\{j\}} (x_{ijs} + x_{jis}) = 1 \ (\forall j \in T, \forall s \in S)$$

$$\sum_{s \in S} (x_{ijs} + x_{jis}) = 1 \ (\forall i, j \in T (i \neq j))$$

 $x_{ijs} \in \{0,1\} (\forall i,j \in T, \forall s \in S)$

5.スポーツスケジューリング

• 例題

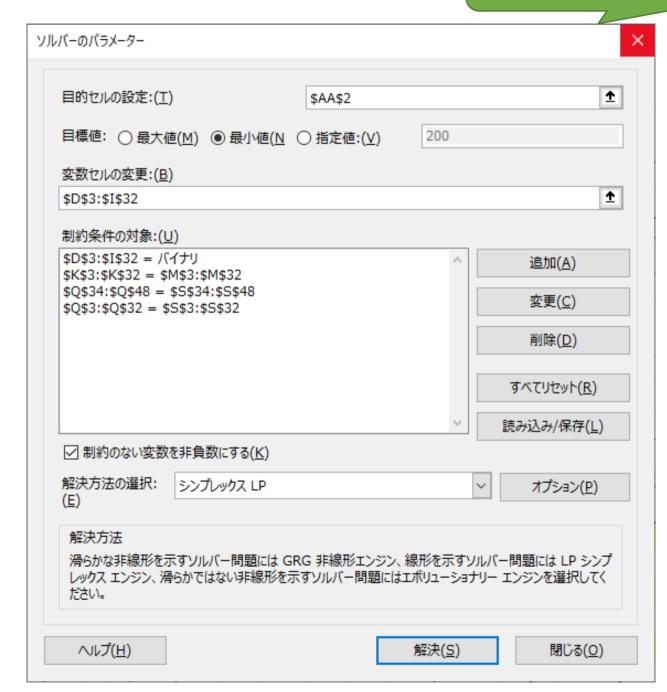
✓6チームの1重総当たりリーグ戦

team/slot	1	2	3	4	5
A	B	C			
В	A	E			
C	D	A			
D	C	F			
E	F	В			
\mathbf{F}	E	D			

d_{ij}	A	B	C	D	E	F
A	0	5	4	6	6	8
B		0	5	9	4	7
C			0	4	2	4
D				0	6	6
E					0	3
F						0

5.スポーツ

問題を


Excelシートに 記述

	4 A	В	С	D	Ε	F	G	Н	-1	J	K	_ M	N	0	Р	Q	R	S	Т	U	٧	W	X	Υ	Z	AA	AB A	C	AD	ΑE	AF .	AG	АН	Al	AJ
1				x_{ij}	[0,1	1}-変	数				自分自	身		Home	Away	各tea	m (a	i 各sl	lotで							距離最小	化			縦和	の予	備計	算		
2	slot			Α	В	С	D	Е	F		とは戦	わなり	, N	横和	縦和	どこた	rE	丁度	1回対	博						79.000	8	lot'	team	Α	В	С	D	Е	F
3	1	1	Α	0	0	0	0	0	1		0 =	= 0		1	0	1	=	1		0	5	4	6	6	8	8.00			1	0	0	1	0	1	1
4	1	2	В	0	0	1	0	0	0		0 =	= 0		1	0	1	=	1		5	0	5	9	4	7	5.00			2	0	1	0	1	0	1
5	1	3	С	0	0	0	0	0	0		0 =	= 0		0	1	1	=	1		4	5	0	4	2	4	0.00			3	0	0	0	1	1	1
6	1	4	D	0	0	0	0	1	0		0 =	= 0		1	0	1	=	1		6	9	4	0	6	6	6.00			4	1	1	0	0	1	0
7	1	5	Е	0	0	0	0	0	0		0 =	= 0		0	1	1	=	1		6	4	2	6	0	3	0.00			5	1	1	0	1	0	0
8	1	6	F	0	0	0	0	0	0		0 =	= 0		0	1	1	=	1		8	7	4	6	3	0	0.00									
9	2	1	Α	0	1	0	0	0	0		0 =	= 0		1	0	1	=	1		0	5	4	6	6	8	5.00		<	計算結	果>					
10	2	2	В	0	0	0	0	0	0		0 =	= 0		0	1	1	=	1		5	0	5	9	4	7	0.00				対戦	組み	合わ	せ表	(赤	-40
11	2	3	С	0	0	0	1	0	0		0 =	= 0		1	0	1	=	1		4	5	0	4	2	4	4.00	t	ean	n∖slot	1	2	3	4	5	
12	2	4	D	0	0	0	0	0	0		0 =	= 0		0	1	1	=	1		6	9	4	0	6	6	0.00		1	Α	F	В	E			
13	2	5	E	0	0	0	0	0	1		0 =	= 0		1	0	1	=	1		6	4	2	6	0	3	3.00		2	В	С	I	D			
14	2	6	F	0	0	0	0	0	0		0 =	= 0		0	1	1	=	1		8	7	4	6	3	0	0.00		3	С		D F	F	E	A	
18	3	1	Α	0	0	0	0	1	0		0 =	= 0		1	0	1	=	1		0	5	4	6	6	8	6.00		4	D	E			Α		
16	3	2	В	0	0	0	1	0	0		0 =	= 0		1	0	1	=	1		5	0	5	9	4	7	9.00		5	Ε		F			В	
17	3	3	С	0	0	0	0	0	1		0 =	= 0		1	0	1	=	1		4	5	0	4	2	4	4.00		6	F				В	D	
18	3	4	D	0	0	0	0	0	0		0 =	= 0		0	1	1	=	1		6	9	4	0	6	6	0.00									
19	3	5	E	0	0	0	0	0	0		0 =	= 0		0	1	1	=	1		6	4	2	6	0	3	0.00				対戦	組み	合わ	せ裏		
20	3	6	F	0	0	0	0	0	0		0 =	= 0		0	1	1	=	1		8	7	4	6	3	0	0.00	t	ean	n∖slot	1	2	3	4	5	
21	. 4	1	Α	0	0	0	0	0	0		0 =	= 0		0	1	1	=	1		0	5	4	6	6	8	0.00			Α	+F	+B ·	+E	-D	-C	
22	4	2	В	0	0	0	0	0	0		0 =	= 0		0	1	1	=	1		5	0	5	9	4	7	0.00			В	+C	-A -	+D	-F	-E	
23	4	3	С	0	0	0	0	1	0		0 =	= 0		1	0	1	=	1		4	5	0	4	2	4	2.00			С	-В	+D -	+F	+E	+A	
24	4	4	D	1	0	0	0	0	0		0 =	= 0		1	0	1	=	1		6	9	4	0	6	6	6.00			D	+E	-C -	-В	+A	-F	
28	4	5	E	0	0	0	0	0	0		0 =	= 0		0	1	1	=	1		6	4	2	6	0	3	0.00			E	-D	+F	-A	-C	+B	
26	4	6	F	0	1	0	0	0	0		0 =	= 0		1	0	1	=	1		8	7	4	6	3	0	7.00			F	-A	-E -	-C	+B	+D	
27	5	1	Α	0	0	0	0	0	0		0 =	= 0		0	1	1	=	1		0	5	4	6	6	8	0.00					П				
28	5	2	В	0	0	0	0	0	0		0 =	= 0		0	1	1	=	1		5	0	5	9	4	7	0.00				+付(åHor	me	game	e	
29	5	3	С	1	0	0	0	0	0		0 =	= 0		1	0	1	=	1		4	5	0	4	2	4	4.00				-付に	t Awa	y ga	ame		
30	5	4	D	0	0	0	0	0	0		0 =	= 0		0	1	1	=	1		6	9	4	0	6	6	0.00									
31	. 5	5	E	0	1	0	0	0	0		0 =	= 0		1	0	1	=	1		6	4	2	6	0	3	4.00									
32	5	6	F	0	0	0	1	0	0		0 =	= 0		1	0	1	=	1		8	7	4	6	3	0	6.00									
33	3		和	1	2	3	4	5	6					i	j																				
34	L	1	Α		1	0	0	1	1					1	2	1	=	1		[K3]	= IND	EX(D	3:13, 1	, Вз)										制約(0
38	i	2	В	0		1	1	0	0					1	3	1	=	1			→ [Ka	3]を=	1 Lo- (ل. [K	4:K3	2] ヘ貼り作	けけ								
36	5	3	С	1	0		1	1	1					1	4	1	=	1	[AE3]	= SUN	И(OF	FSET(D\$3,	0+6*	(\$AD3-1),	0, 6	, 1))					制約	1
37	7	4	D	1	0	0		1	0					1	5	1	=	1			→ [AE	3] 찬	コピー	し.[AE3:A	17] へ貼り	付け								
38	3	5	Ε	0	1	0	0		1					1	6	1	=	1		[03]	= SUN	И(Dз:	(81												
39)	6	F	0	1	0	1	0						2	3	1	=	1		[P3]	= OFF	SET(AE\$3,	0, \$B	3-1)										
40)													2	4	1	=	1		[Q3]															
41	L													2	5	1	=	1			→ [03	3:Q3]	をコビ	ーし.	[04:	·Q32] ヘ貼	り付	H							
42	2													2	6	1	=	1	[D34]	= IF(D\$33=	-\$ B34	, "", S	UMIF	(\$C\$3:\$0	C \$ 32	. \$0	34, D \$ 3	3:D\$	32)))		制約:	2
43	3													3	4	1	=	1			→ [D3	34] 찬	コピー	し.[D34:f	[39] ヘ貼り	り付け	t							
44	L													3	5	1	=	1	[-						, P34) +			D\$34:\$	1\$39	, P34	1, 0	34)		
48	5													3	6	1	=	1		_						248] ヘ貼	9付に	t							
46	5													4	5	1	=	1		[EAA														目的	関数
47	7													4	6	1	=	1							AA4:A	A32] ヘ貼	り付	t							
48	3													5	6	1	=	1	[AA2]	=SUN	I(AA3:	AA32)												

5.スポーツスケジューリング

ソルバーの設定が 全て終了した所

ソルバー設定

5.スポーツスケジューリング

• 例題:結果

	ABA	С	AD	AE	AF	AG	AH	Al	AJ	AK	AL
8											
9			<計算網	:果>	>						
10				対単	組	み合ね	わせき	表 (7	≒ −⊿	ムのみ表示	
11	te	ea	m∖slot	1	2	2 3	4	5			
12		1	Α	F	В	Е				[AE12]	= IF(ISNA(MATCH(1, OFFSET(\$D\$2:\$I\$2, (AE\$11-1)*6+\$AC12, 0), 0)),
13	1	2	В	С		D					"",
14	3	3	С		D	F	Е	Α			INDEX(\$D\$2:\$I\$2, 1, MATCH(1, OFFSET(\$D\$2:\$I\$2, (AE\$11-1)*6+\$AC12, 0), 0))
15	4	4	D	Е			Α				→ [AE12] をコピーし,[AE12:AI17] へ貼り付け
16	į	5	Ε		F			В			
17	(6	F				В	D			
18											
19				対単	は組 る	み合ね	りせき	表			
20	te	ea	m∖slot	1	2	2 3	4	. 5			
21			Α	+F	+B	+E	-D	-C		[AE21]	= IF(AE12="",
22			В	+C	-A	+D	-F	-E			"-"&INDEX(\$AD\$21:\$AD\$26, MATCH(\$AD21, AE\$12:AE\$17, 0)),
23			С	-B	+D	+F	+E	+A			"+"&AE12)
24			D	+E	-C	-B	+A	-F			→ [AE21] をコピーし,[AE21:AI26] へ貼り付け
25			Ε	-D	+F	-A	-C	+B			
26			F	-A	-E	-C	+B	+D			
27											
28				+付	はH	lome	gan	ne			
29				-付	ltΑι	way §	game	е			

【参考】Pyth

• 記述1:係数設定

```
D = [[0,5,4,6,6,8], # team間移動距離 [5,0,5,9,4,7], [4,5,0,4,2,4], [6,9,4,0,6,6], [6,4,2,6,0,3], [8,7,4,6,3,0]]
T = ['A','B','C','D','E','F'] # team名 I,J,S = range(6),range(6),range(5)
```

• 記述2:

定式化と求解

最適解 と 最適値 の表示

```
from mip.model import *
m = Model("SportsSchedulingEx1") # モデルの設定:スポーツ・スケジューリング
「x = m.add_var_tensor((6,6,5), name="x", var_type="B") # 0-1変数(size=|I|x|J|x|S|)
m.objective = minimize(xsum(2*D[i][j]*xsum(x[i][j][s] for s in S) for i in I for j in J))
for s in S:
 for i in I:
   m += x[i][i][s] == 0 # 制約0:自チームとは戦わない
for s in S:
 for i in J:
   m += xsum(x[i][i][s] + x[i][i][s] for i in I if i!=i) == 1 # 制約1
for i in I:
 for i in J:
   m += xsum(x[i][i][s] + x[i][i][s] for s in S if i!=i) == 1 # 制約2
m.optimize() # 最適化(求解)の実行
if m.status.value==O: # もし、最適解が求まったなら
  print("最適解:")
                   # 最適解を表示
  for s in S:
   for i in I:
     for i in J:
      if x[i][j][s].x == 1:
         print(" x[",T[i],T[j],s+1,"]=", x[i][j][s].x, end=" ")
   print()
  print("最適値:", m.objective_value, "=", m.objective) # 目的関数値を表示
                   # もし、最適解が求まらなかったなら
  print("error:最適解は求まりませんでした")
                                                # エラーメッセージを表示
最適解:
```

x[BA1]=1.0 x[DC1]=1.0 x[EF1]=1.0 x[BF2]=1.0 x[CA2]=1.0 x[DE2]=1.0 x[AE3]=1.0 x[CB3]=1.0 x[DF3]=1.0

x[CE5]=1.0 x[DB5]=1.0 x[FA5]=1.0

x[DA4]=1.0 x[EB4]=1.0

最適値: 158.0 = + 10.0x_0_1_0 + 10.0x_0_1_1 + 10.0x_0_1_2 + 10.0x_0_1_3 + 10.0x_0_1_4 + 8

 \times [C F 4]= 1.0

参考文献

- 1. A. Schrijver: Theory of Linear and Integer Programming, John Wiley and Sons, 1986.
- 2. L.A. Wolsey: Integer Programming, John Wiley and Sons, 1998.
- 3. M. Conforti, G. Cornuejols and G.Zambelli: Integer Programming, Springer, 2014.
- 4. 久保幹雄, J.P.ペドロソ, 村松正和, A.レイス:あたらしい数 理最適化, 近代科学社,2012.
- 5. 久保幹雄,小林和博,斉藤努,並木誠,橋本英樹:Python言語によるビジネスアナリティクス,近代科学社,2016.
- 6. 藤澤克樹,後藤順哉,安井雄一郎:Excelで学ぶOR,オーム社, 2011.
- 7. 堀田敬介:えくせるであそぶ, 創成社, 2005.