

4. 最適化 optimization

2024年12月9日(月)

Outline

- 1. 線形最適化とは?
 - 1. 線形最適化問題(Linear Optimization Problem)
 - 2. 線形最適化問題をソルバー(solver)を利用して解く

✓ Excel solver, gurobi, cplex, python-MIP

- 2. 様々な最適化問題を線形最適化で解く
 - 1. 輸送問題
 - 2. 最大重みマッチング問題
 - 3. 最短路問題
 - 4. 最大流問題
 - 5. 最小カット問題
 - 6. 最小費用流問題

1. 線形最適化とは?

- 1. 線形最適化問題(Linear Optimization Problem)
 - 線形(1次)等式・不等式系であらわされる条件のもとで, 線形 (1次)の目的関数を最大・最小化する形式の最適化問題

min.
$$2x_1 + x_2 + 2x_3 + x_4 + 3x_5$$

s.t. $x_1 + 2x_3 + x_5 \ge 5$
 $9x_1 + 2x_2 + x_4 + 4x_5 \ge 1$
 $x_2 + 5x_3 + x_5 \ge 3$
 $x_1 + 3x_3 + x_5 \ge 2$
 $x_1, x_2, x_3, x_4, x_5 \ge 0$
非負条件 nonnegativity

- 線形計画問題を解くための主な手法 algorithm
 - 単体法 simplex method, G.B.Dantzig(1947)
 - 内点法 interior point method, N.Karmarkar (1984)
 - (楕円体法 ellipsoid method, Yudin, A.S.Nemirovskii(1976), Khachiyan(1979))

1. 線形最適化とは?

- 2. 線形最適化問題をソルバー(solver)を利用して解く
 - 1. モデルをExcelに記述し、ソルバーを利用して解く
 - 2. モデルを LP file に記述し, gurobi で解く
 - 3. モデルを LP file に記述し, cplex で解く
 - 4. Google Colaboratory と Python-MIP を利用して解く etc.

1-2-1	. Excellこ	記述しソル	·/×-	ーで	解く
• 準備: ① メコ → [Excel]	Excel ソ ルバー ニューから[ファイ・ のオプションld-box か	- を使える状態(ル]-[オプション]を選	にする <mark>沢</mark> box)	る設定フ Excelの初 ソルバー	<mark>与法</mark> 期状態では を使えない
Excel のオプション 全般 数式 データ	Microsoft Office のアドインの表示と管理を行		? ×		
文章校正 保存 言語 簡単操作 詳細設定 リボンのユーザー設定 クイック アクセス ツール バー アドイン トラスト センター	名前 ^ アクティブなアブリケーション アドイン Microsoft Power Map for Excel アドイン」を選択 アクティブでないアブリケーション アドイン Acrobat PDFMaker Office COM Addin ATOK拡張ツール COM Addin Euro Currency Tools Inquire Microsoft Actions Pane 3 Microsoft Actions Pane 3 Microsoft Data Streamer for Excel 日付 (XML) 分析ツール - VBA ドキュメント関連アドイン アドイン: Microsoft Power Map for Excel	場所 C:¥r Map Excel Add-in¥EXCELPLUGINSHELL.DLL C:¥ Excel Add-in¥PowerPivotExcelClientAddIn.dll C:¥ot¥Office16¥Library¥SOLVER¥SOLVER.XLAM C:¥ot¥Office16¥Library¥SOLVER¥SOLVER.XLAM C:¥ot¥Office16¥Library¥Analysis¥ANALYS32.XLL C:¥)¥JustSystems¥ATOK¥EXT¥ATOKEXEA.DLL C:¥ice¥root¥Office16¥Library¥EUROTOOL.XLAM C:¥oft Office¥root¥Office16¥DCF¥NativeShim.dll C:¥icrosoftDataStreamerforExcel.vsto vstolocal C:¥ies¥Microsoft Shared¥Smart Tag¥MOFL.DLL C:¥¥Office16¥Library¥Analysis¥ATPVBAEN.XLAM	種類 COM アドイ COM アドイ COM アドイ COM アドイ Excel アドイ COM アドイ Excel アドイ COM アドイ COM アドイ Excel アドイ COM アド	y Rアドイン(<u>A</u>): uro Currency Tools <u>ルパー アドイン 新ツール</u> - VBA)[ソルバー チェック)[OK]クリ	? × OK キャクセル 参照(B) オートメーション(U) マトイン]
	発行者: Microsoft Corporation 互換性: 互換性に関する情報はありません 場所: C:¥Program Files (x86)¥Mi EXCELPLUGINSHELL.DLL 説明: Power Map 3D Data Visualization ro 管理(A): Excel アドイン マ 設定(G)	[設定]をクリック 「 →[アドイン]d-box が		1化に関する数学的な手法を の解を求めます	を用いて、指定された範囲で

1-2-1. Exc	celに記述しソルバーで	解く
• ソルバーの 起動 = メニ <i>=</i>	記動・設定・実行 ューから[データ]-[ソルバー]を選択	
ファイル ホーム 挿入 ページレイアウト 数式 データ データの デキストまた Web テーブルまた 最近使っ 既存 取得、は CSV から から は範囲から たソース の接続 データの取得と変換 データの取得と変換 ケロ アロ アロ アロ アロ アロ	ϕ	●目 ●目 ●目 += 2, グループ グループ 小計 化 × 解除 × アウトライン 5
→ [ソルバーの パラメーター] d-box が開く	ソルパーのパラメーター × 目的セルの設定:(I) ・ 目標値: ● 最大値(M) ○ 最小値(N ○ 指定値:(V) ● 査数セルの変更:(B) ・ ・ ・ ・ ・ 割約条件の対象:(U) ・ ・ ・	数の設定 ル)の設定
	■	件の設定
	 ✓ 制約のない変数を非負数にする(K) 解決方法の選択: GRG 非線形 ✓ オブション(P) 解決方法 滑らかな非線形を示すソルバー問題には GRG 非線形エンジン、線形を示すソルバー問題には LP シンブレックス エンジン、滑らかではない非線形を示すソルバー問題にはエポリューショナリー エンジンを選択してくたさい。 実行(計 	選択 ョン設定 ·算開始)
	ヘルプ(<u>H</u>) 開じる(<u>O</u>)	

1-2-1. Excelに記述しソルバーで解く

- •例)線形最適化問題をExcelシートに記述 min. $2x_1 + x_2 + 2x_3 + x_4 + 3x_5$ s.t. $x_1 + 2x_3 + x_5 \ge 5$ $9x_1 + 2x_2 + x_4 + 4x_5 \ge 1$
 - $x_{1} + 2x_{2} + x_{4} + 4x_{5} \ge x_{2} + 5x_{3} + x_{5} \ge 3$ $x_{1} + 3x_{3} + x_{5} \ge 2$ $x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \ge 0$

min. c s.t.A	$x \ge x \ge$	b 2 0	行	列・ベクトル による定式化 の表記
$c^{T} = (2$	1	2	1	3)
/1	0	2	0	$1 \setminus 5 \setminus$
<u> </u>	2	0	1	4 h - 1
A = 0	1	5	0	1 , 0 - 3
$\setminus 1$	0	3	0	$1/$ $\backslash 2/$

1-2-1. Excelに記述しソルバーで解く

• Excelシート上の内容をソルバーへ設定する

	В	С	D	E	F	G	Н	I	J	K	L	L	М	Ν	0	P	ソルバーの設定	が
1	解く											y	リルバーのパラメー	9-		· · · · · · · · · · · · · · · · · · ·	今 て 紋 了 し た 可	
2		<i>x</i> ₁	x_2	<i>x</i> 3	<i>x</i> ₄	x 5												
3							\mathbb{P}						目的セルの語	g定:(工)		\$I\$5		S
4								obj. f n							_		-	
5	min	2	1	2	1	3	=	0	\mathbf{P}	\leq			▶ 目標値: () 最大値(<u>M</u>)	● 最小値(<u>)</u>	⊻ ○指定値:(⊻)) 0	
6	s.t	. 1	0	2	0	1	-	0	IIV	5		Y	変数セルの図	变更:(<u>B</u>)				
7		9	2	0	1	4	=	0	IIV	1			\$C\$3:\$G\$	3			E	S
8		0	1	5	0	1	=	0	$\geq \parallel$	3			制約条件の					
9		1	0	3	0	1	=	0	M	2	ŀ		\$I\$6:\$I\$9	>= \$K\$6:\$I	<\$9		へ 追加(<u>A</u>)	
10								LHS		RHS	1						+ ∓ (0)	
11																		
:	<	制約条	- 件の	追加	手順	>					-	-					削除(<u>D</u>)	
•	· 1]. 1	·그슈 구니	コカーク		」 「ハ ス													
: •	l.] そ ン	シック					,								すべてリセット(<u>R</u>)	
12	2.	制約	条件で	を設え	E'し[•	OK]:	7	リック	7				非馬				✓ 読み込み/保存(L)	
h							-						☑ 制約のな	い変数を非負	数にする(<u>K</u>)			
1 1	則約条	件の変更								×			解決方法の	選択: シンプ	በረካታ LP)	✓ オプション(P)	
1			¥										(<u>E</u>)		. 0.			
1	セル参	照:(上)			_	制約条件	:(<u>N</u>)						解決方法	[シ	ンフレ	ィックス	、LP]を選ぶ	
2	\$1\$6	:\$1\$9		<u>T</u> >=	\sim	\$K\$6:\$K	\$9		T				滑らかな非	線形を示すソル	バー問題には	GRG 非線形エン	ジン、線形を示すソルバー問題には LP シンフ 配けてポリューショナリー エンボンを選択してく	f
1		<u></u>				1		h. h. h. d	-				ださい。	- クレート・クレート				1.
2		<u>0</u> K		<u>اگر</u>	лц(<u>А</u>)			+ヤンセル(<u>C</u>)					[円	年伏]才	「メンを	押すと水解を開ぬ	Ъ
23													∧ルプ(<u>H</u>)			解決(<u>S</u>) 閉じる(<u>O</u>)	
24												_						

1-2-1. Excelに記述しソルバーで解く

1-2-2. LP file に記述し gurobi で解く

・線形最適化問題の定式化(例)

min. s.t. $2x_1 + x_2 + 2x_3 + x_4 + 3x_5$ $x_1 + 2x_3 + x_5 \ge 5$ $9x_1 + 2x_2 + x_4 + 4x_5 \ge 1$ $x_2 + 5x_3 + x_5 \ge 3$ $x_1 + 3x_3 + x_5 \ge 2$ $x_1, x_2, x_3, x_4, x_5 \ge 0$ 非負条件 nonnegativity

・ 定式化を LP file 形式で記述

minimize 2 x1 + x2 + 2 x3 + x4 + 3 x5subject to x1 + 2 x3 + x5 >= 5 9 x1 + 2 x2 + x4 + 4 x5 >= 1 x2 + 5 x3 + x5 >= 3 x1 + 3 x3 + x5 >= 2end

目的関数 objective function

制約条件 constraints

※LP file 形式では, 非負条件は記述しない (変数は自動的に全て非負と設定される) 非負条件 nonnegativity

1-2-2. LP file に記述し gurobi で解く

- 定式化をLP file 形式で記述
 - ✓ マイドキュメント(K:ドライブ)に専用のフォルダ[LP]を作成する
 - ✓ テキストエディタ(TeraPadやメモ帳)を起動する
 - ✓ 定式化をLP file 形式で記述する

minimize 2 x1 + x2 + 2 x3 + x4 + 3 x5 subject to x1 + 2 x3 + x5 >= 5 9 x1 + 2 x2 + x4 + 4 x5 >= 1	注1)数値・変数・記号の間に「半角スペース」が必要 (※空白のない文字を1つの単語と認識するため) 注2)非負条件は記述しない(変数はデフォルトが非負 のため). 非負条件のない変数(フリー変数)を使う場 合は, 2つの非負変数の差に置き換える. 即ち, フリー 変数の x は $x = x_p - x_m$ ($x_p, x_m \ge 0$) と置き換える
x2 + 5 x3 + x5 >= 3	
x1 + 3 x3 + x5 >= 2	
end	注) [***」は半角革数で好きな名前

✓ フォルダ[LP]内に保存する. その際, ファイルの種類を「全て (*.*)」にし、ファイル名&拡張子を半角英数で「***.lp」と記述 ※ファイルの種類を全てに変更し忘れて「テキストファイル(*.txt)」で保存した場合、ファイル名が 「***.lp.txt」となるので、ファイル名の変更で最後の部分「.txt」を削除し、「***.lp」とする

1-2-2. LP file に記述し gurobi で解く

- LP file を gurobi で解く
 - ▶「コマンドプロンプト command prompt」を起動する
 - ✓ [Windows]+[R] キーを押し, [ファイル名を指定して実行] を起動する

>「Ipファイル」が保存されているフォルダへ移動する
 ✓ コマンドプロンプト上で [K:]と記述して [Enter] キーを押す
 → Kドライブ へ移動する
 ✓ コマンドプロンプト上で [cd LP]と記述して [Enter] キーを押す
 → [LP]フォルダへ移動する(※ cd = change directory)

• <mark>gurobi</mark> で解く	※コマンドプロンプト上で[gurobi]と記述して [Enter]キー押す → gurobi が起動する
LP file の読込	
gurobi> m=read("***.lp") שיעדי שיעדי (מון איין איין איין איין איין איין איין אי
問題を解く	Gurobi Interactive Shell (win32), Version 5.6.3 Copyright (c) 2013, Gurobi Optimization, Inc. Type "help()" for help gurobi> m = read("17knw_lp1.lp")
gurobi> m.optim	ize() Presolve removed 2 rows and 3 columns and 13 nonzeros Presolve removed 2 rows and 3 columns
解の表示(最適解&最適値	Presolve time: U.U2s Presolved: 2 rows, 2 columns, 4 nonzeros Iteration Objective Primal Inf. Dual Inf. Time 0 1.4222222e+00 1.866667e+00 0.000000e+00 0s
gurobi> m.printA	ttr('X') 1 5.1111111e+00 0.000000e+00 0.000000e+00 0s
gurobi> m.ObjVa	Optimal objective 5.111111111e+00 gurobi> m.printAttr('X') Variable X
解をファイルに保存	x1 0.111111 x3 2.44444 surobi2 m.0biVal
gurobi> m.write(<pre>"***.sol") * surobi> m.write("17knw_lp1.sol") surobi> quit()</pre>
gurobiの終了	
gurobi> quit()	

1-2-3. LP file に記述し cplex で解く

1-2-4. Python-MIP で解く

- Google Colaboratory を開く
 - ▶ <u>利用方法(初回)</u>
 - (1) google アカウントにログインし, google drive へ移動
 - (2)「新規」ー「その他」ー「アプリを追加」を選択
 - (3)「Google Colaboratory」を追加
 - ▶ <u>利用方法(2回目以降)</u>
 - (1) google アカウントにログインし, google drive へ移動
 - (2)「新規」-「その他」-「Google Colaboratory」を選択
 - ▶ ファイル名は default では [Untitled0.ipynb] となっている. 変更可.
 - ファイルは google drive に自動保存される.一度作成したら、次回以降は、 google drive 内のファイル [***.ipynb] を選択して、開くことができる

※この拡張子名は IPython Notebook の略で, Jupyter Notebook 専用の ファイルということ. IPython は Python を対話的に実行する環境の1つで, Jupyter Notebook とは、それをブラウザ上で動かす実行環境

1-2-4. Python-MIP で解く

Python-mip インストール

- ・ 線形最適化問題の記述1(係数の設定)
 - 左上の[+コード]ボタンを押して,次の記述欄([コード]欄)を追加する
 - 以下の通りに記述し、左の三角ボタンを押して「実行」する

2. 多様な最適化問題

- ・様々な最適化問題を線形最適化で解く
 - 1. 輸送問題
 - 2. 最大重みマッチング問題
 - 3. 最短路問題
 - 4. 最大流問題
 - 5. 最小カット問題
 - 6. 最小費用流問題

輸送問題

A

C

湘南工場(S)

B

問)文教重工には3工場(湘南・越谷・旗の台)あり,製品を供給(製品 生産量)できる

顧客は5人いて,需要(製品を欲しい量)がある

D

旗の台工場

(H)

3工場から5人の顧客それぞれへの単位あたり輸送コストは表の通り 輸送コストが最小となる配送計画をたてよ

供給

120

130

70

越谷工場

E

工場の供給量

顧客の需要量

50

A

3

5

7

需要

工場、顧客

湘南(S)

越谷(K)

旗の台(H)

工場から顧客へ製品を1単位

60

4

5

40

Ð

8

2

3

70

5

3

2

配送するのにかかる輸送コスト表

80

R

2

6

3

輸送問題の定式化

- 線形最適化 Linear Optimization
- 問題のモデル化(定式化)
 - 目的:輸送コストを最小
 - <mark>条件1</mark>:顧客の需要を満たす
 - 条件2:工場の出荷量は供給量まで
 - 条件3:輸送量は非負

• 変数設定

 x_{ij} : 工場 $i \rightarrow$ 顧客jへの輸送量

ex) x_{SB} = 30 : 湘南工場(S)から 顧客Bへ製品を30輸送する その輸送コスト: 2×30=60

	需要	50	80	60	70	<i>40</i>
供給	工場乀顧客	A	B	С	D	E
120	湘南(S)	3	2	4	5	8
130	越谷(K)	5	6	5	3	2
70	旗の台(H)	7	3	1	2	3

輸送問題

問題の定式化

minimize

18 8名		需要	50	80	60	70	<i>40</i>
可起	供給	工場乀顧客	A	B	С	D	E
ットーキン	120	湘南(S)	3	2	4	5	8
り正式化	130	越谷(K)	5	6	5	3	2
د د	70	旗の台(H)	7	3	1	2	3
$3 x_{SA} + 2 x_{SB} + 4 x_{SC} + 5 x_{SD} + 8$ + 5 x_{KA} + 6 x_{KB} + 5 x_{KC} + 3 x_{KD} + + 7 x_{HA} + 3 x_{HB} + 1 x_{HC} + 2 x_{HD}	<i>x_{SE}</i> ⊦ 2 <i>x_{KE}</i> + 3 <i>x_{HE}</i>	目的問	関数 c	bject	ive fu	nctio	n

subject to

end

$$\begin{aligned} x_{SA} + x_{KA} + x_{HA} &= 50 \\ x_{SB} + x_{KB} + x_{HB} &= 80 \\ x_{SC} + x_{KC} + x_{HC} &= 60 \\ x_{SD} + x_{KD} + x_{HD} &= 70 \\ x_{SE} + x_{KE} + x_{HE} &= 40 \\ x_{SA} + x_{SB} + x_{SC} + x_{SD} + x_{SE} &<= 120 \\ x_{KA} + x_{KB} + x_{KC} + x_{KD} + x_{KE} &<= 130 \\ x_{HA} + x_{HB} + x_{HC} + x_{HD} + x_{HE} &<= 70 \end{aligned}$$

制約条件 constraints

非負条件 nonnegativity

※LPファイル形式では書かない

ファイル名「ex.lp」で保存(LPファイル)

輸送問題の求解

Excelで解く(セル記述&ソルバー設定)

 \times ソルバーのパラメーター В Α CDEFG | H K 3. 輸送問題 目的セルの設定:(T) ≏ 2 \$1\$6 輸送コスト 工場乀顧客 В 3 С D E А 目標値: ○ 最大値(M) ● 最小値(N ○ 指定値:(V) 0 湘南(S) 2 4 3 4 5 8 変数セルの変更:(B) 5 越谷(K) 5 6 5 3 2 総コスト ≏ \$C\$9:\$G\$11 旗の台(H) 2 6 7 3 0 1 7 制約条件の対象:(U) \$C\$13:\$G\$13 = \$C\$15:\$G\$15 供給 8 А В С D F 輸送量 追加(A) Xii \$I\$9:\$I\$11 <= \$K\$9:\$K\$11 9 S \leq 120 0 変更(C) 10 Κ 0 ≤ 130 削除(D) 11 н 0 70 \leq 12 すべてリセット(R) 13 輸送量 0 0 0 0 0 読み込み/保存(L) 14 Ш 11 11 Ш ✓ 制約のない変数を非負数にする(K) 15 需要 50 80 60 70 40 16 解決方法の選択: シンプレックス LP \sim オプション(P) (E) 17 [19] = SUM(C9:G9)18 →[I9]をコピーし、[I10:I11]へ貼り付け 解決方法 滑らかな非線形を示すソルバー問題には GRG 非線形エンジン、線形を示すソルバー問題には LP シンプ 19 [C13] = SUM(C9:C11)レックス エンジン、滑らかではない非線形を示すソルバー問題にはエボリューショナリー エンジンを選択してく →[C13]をコピーし、[D13:G13]へ貼り付け 20 ださい。 21 [I6] = SUMPRODUCT(C4:G6, C9:G11) 22 ヘルプ(H) 解決(S) 閉じる(0)

ソルバーの設定が

全て終わった状態

輸送問題の求解

• Excelソルバーで解いた結果

	A	В	С	D	E	F	G	Η	Ι	J	K	
1	輸送	問題										
2		輸送コスト										
з		工場乀顧客	Α	В	С	D	Е					
4		湘南(S)	3	2	4	5	8					湘南工場(S) <mark>デーーーー>(A°) 5(</mark>
5		越谷(K)	5	6	5	3	2		総コスト			
6		旗の台(H)	7	3	1	2	3		670			
7												
8		x _{ij}	Α	В	С	D	Е		輸送量		供給	
9		S	40	80	0	0	0		120	≦	120	
10		K	10	0	0	60	40		110	\leq	130	
11		Н	0	0	60	10	0		70	\leq	70	
12												130 3 $($ $)$ 60
13		輸送量	50	80	60	70	40					40. 7
14			Ш	П	П	П	П	Ē	员 適解	• 1		
15		需要	50	80	60	70	40		の証信	FF -	拾訂	
										щ	기즈미	
												旗の台工場
											V	(H) 10 2
												70 10 -
												40

	■ コマンド プロンプト - cplex □ □
輸送問題の求	(Pl'2) read ex.lp in rd!em lex.lp read. Read time = 0.00 exec. (0.00 ticks)
	$\begin{array}{c} \text{CPLEX} & \text{d} p a \\ \text{Minimize} \end{array} \qquad $
• coleyで留く	obj: 3 xSA + 2 xSB + 4 xSC + 5 xSD + 8 xSE + 5 xKA + 6 xKB + 5 xKC + 3 xKD + 2 xKE + 7 xHA + 3 xHB + xHC + 2 xHD + 3 xHE
cpicx < D+ x	Subject To
Y:¥LP> <mark>cplex</mark> [Enter]	c_{1} : $x_{SA} + x_{KA} + x_{HA} - 50$ c_{2} : $x_{SB} + x_{KB} + x_{HB} = 80$ c_{2} : $x_{SC} + x_{HC} + x_{HC} - 60$
	$c_3: x_{SC} + x_{KC} + x_{HC} = 70$ $c_4: x_{SD} + x_{KD} + x_{HD} = 70$
LP file の読込	co: xSE + xKE + xHE = 40 c6: xSA + xSB + xSC + xSD + xSE <= 120 c7: x1/4 + x1/D + x1/C + x1/D + x1/E <= 120
CDIEX> road ov In	c7: xAA + xAB + xAC + xAD + xAE <- 130 c8: xHA + xHB + xHC + xHD + xHE <= 70
CFLLA- Teau ex.ip	Bounds All variables are >= 0.
問題の主子(破詞)	CPLEX opt
同週の衣小(推認)	No LP presolve or aggregator reductions. Presolve time = -0.00 sec. (0.01 ticks)
CPLEX> d p a	Iteration log
	Iteration: 1 Dual objective = 160.000000
問題を解く	Dual simplex - Optimal: Objective = 6.7000000000e+002 Solution time = - 0.00 sec. Iterations = 7 (0)
CPLEX> opt	Deterministic time = 0.01 ticks (13.28 ticks/sec)
	CPLEX> d so v - d so v = display solution variables
解の表示(最適解&最適値)	xSA 40.000000 vSB 80.000000
	xKA 10.000000
CPLEA > USUV =	xKE 40.000000
CPLEX> d so obi	xHD 10.000000
	All other variables in the range I-15 are U. CPLEX>

• cplexで解いた結果

	Dual simplex - Optimal: Objective = <u>6.7000000000e+002</u> Solution time = 0.00 sec. Iterations = 7 (0)	
	Deterministic time = 0.01 ticks (13.28 ticks/sec) CPLEX> d so v -	
Г	Variable Name Solution Value xSA 40.000000	▲ 湘南工場(S) <mark>40 > (予) 50</mark>
	xSB	a值 120 80~2
	xKE 40.000000 の評価・検討	
L	xHD 10.000000 All other variables in the range 1-15 are 0.	

※最適値の表記について

 $6.70000000e+02 = 6.7 \times 10^{2}$

= **670**

輸送問題の求解

• Python-MIP で解く

- Python-Mip インストール

- 輸送問題の記述1(係数の設定)

d = [50, 80, 60, 70, 40] # 需要
 s = [120, 130, 70] # 供給
 C = [[3, 2, 4, 5, 8], # 輸送コスト
 [5, 6, 5, 3, 2],
 [7, 3, 1, 2, 3]]
 J = range(len(d))
 I = range(len(s))

輸送問題の最適化について d = [...]:顧客の需要ベクトル s = [...]:工場の供給ベクトル C = [...]:輸送コスト行列 J = range(len(d)):列の添え字の範囲 I = range(len(s)):行の添え字の範囲 X = len(...)は...のサイズlengthを返す 関数を設定しているところ

輸送問題の求解

- 輸送問題の記述2(定式化)

演習:輸送問題の作成・定式化・求解

- 輸送問題
 - 製品:s種類
 - •工場:m箇所,各製品を製造(供給量がそれぞれ異なる)
 - ・顧客:n人,各製品の需要がある
 - ・輸送コスト:工場から各顧客への単位辺り輸送コスト(製品 数にのみ依存し,種類によらない)
 - 1. 上記の問題を具体的な数値で適当につくれ
 - 2. 線形最適化問題に定式化せよ
 - 3. ソルバーで最適解と最適値を求めよ

最大重みマッチング

問)6人の男女がいて、ペアを組む.互いにペアを組む場合の相性を 数値化した.相性が最大になるマッチングを求めたい

最大重みマッチングの定式化

- 0-1整数最適化 0-1 Integer Optimization
- 問題のモデル化(定式化)
 - 目的:重み和の最大化
 - 条件1: 男が組む相手は1人以下
 - 条件2: 女が組む相手は1人以下
- 変数設定

• 0-1変数
$$x_{ij} = \begin{cases} 1 & \dots \notin (i,j) \notin (i,j) \\ 0 & \dots & (i,j) \end{pmatrix}$$

最大重みマッチングの定式化

- 0-1整数最適化 0-1 Integer Optimization
- 問題のモデル化(定式化)

maximize

$$3 x_{11} + 1 x_{12} + 2 x_{13} + 5 x_{14} + 6 x_{15} + 4 x_{16}$$

 $+ 1 x_{21} + 3 x_{22} + 5 x_{23} + 4 x_{24} + 6 x_{25} + 2 x_{26}$
 $+ ...$
 $+ 3 x_{61} + 6 x_{62} + 5 x_{63} + 1 x_{64} + 2 x_{65} + 4 x_{66}$
subject to
 $x_{11} + x_{12} + x_{13} + x_{14} + x_{15} + x_{16} \leq 1$
 $...$
 $x_{61} + x_{62} + x_{63} + x_{64} + x_{65} + x_{66} \leq 1$
 $x_{11} + x_{21} + x_{31} + x_{41} + x_{51} + x_{61} \leq 1$
 $...$
 $x_{16} + x_{26} + x_{36} + x_{46} + x_{56} + x_{66} \leq 1$
 $x_{ii} \in \{0, 1\}$ $(i=1, ..., 6, j=1, ..., 6)$

	\sim	アの	り相	性(重み	+)
W _{ii}	1	2	3	4	5	6
1	3	1	2	5	6	4
2	1	3	5	4	6	2
3	3	6	1	5	4	2
4	4	6	3	2	5	1
5	1	6	2	5	4	3
6	3	6	5	1	2	4

• Excelソルバーで解く(セル記述)

	A	В	С	D	Е	F	G	Н	Ι	J	К	L	M	N	0	Р	Q	R	S	Т
1	完全2	?部グラ	ラフの 🕯	最大重	みてい	ッチング	ت													
2																				
3		重み								0-1 💈	を数									
4		w _{ij}	1	2	3	4	5	6		x _{ij}	1	2	3	4	5	6		和		
5		1	3	1	2	5	6	4		1								0	NIN	1
6		2	1	3	5	4	6	2		2								0	≦	1
7		3	3	6	1	5	4	2		3								0	≦	1
8		4	4	6	3	2	5	1		4								0	\leq	1
9		5	1	6	2	5	4	3		5								0	≦	1
10		6	3	6	5	1	2	4		6								0	≦	1
11																				
12										和	0	0	0	0	0	0		<u>重み</u> れ	-0	
13											IA	IA	IA	IA	IA	IA		0		
14											1	1	1	1	1	1				
15																				
16								【入力	∣ुं	る数式]									
17								$\langle 1 \rangle$		[R5]	= SU	im(k	5:P5)						
18											→[R5]をコピーし, [R6:R10]へ貼り付け									
19																				
20								<u><2></u>		K12]	= SU	M(K	5:K10))						
21											→[K12]をコビーし, [L12:P12]へ貼り付け									
22																				
23								<3>		R13]	3] = SUMPRODUCT(C5:H10, K5:P10)									
04																				

最大重みマッチングの求解

• Fycelで留く	ソルバーのパラメーター								
	目的セルの設定:(<u>T</u>) \$R\$13	1							
(ソルハー設定)	目標値: ● 最大値(M) ○ 最小値(N ○ 指定値:(V) 0								
	変数セルの変更:(<u>B</u>)								
	\$K\$5:\$P\$10								
	制約条件の対象:(U)								
	\$K\$12:\$P\$12 <= 1 \$K\$5:\$P\$10 = パイナリ								
	\$R\$5:\$R\$10 <= 1 変更(<u>C</u>)								
制約条件の追加	X								
ゼル参照:(<u>E</u>) 利約余件:(<u>N</u>) \$R\$5:\$R\$10		<u>t)</u>							
		(L)							
<u>Q</u> K 追加(<u>A</u>) キャンt	セル(<u>C</u>) 約のない変数を非負数にする(<u>K</u>)	/							
	解決方法の選択: シンプレックス LP イプション(2)							
制約条件の追加	×								
セル参昭:(F) 制約冬件:(N)	方法								
\$K\$5:\$P\$10 bin バイナリ	■ いな非線形を示すソルバー問題には GRG 非線形エンジン、線形を示すソルバー問題には LP シスエンジン、滑らかではない非線形を示すソルバー問題にはエボリューショナリー エンジンを選択していた。	<i>い</i> フ べく							
<= ^									
<u>Q</u> K = ≠v>t		0)							
bin	デジャン(日) 解決(S) 閉じる(<u>U)</u>							
116									

• Excelソルバーで解いた結果

З

最大重みマッチン maximize $3 \times 11 + 1 \times 12 + 2 \times 13 + 5 \times 14 + 6 \times 15 + 4 \times 16$ + 1 x 21 + 3 x 22 + 5 x 23 + 4 x 24 + 6 x 25 + 2 x 26+3 x31 + 6 x32 + 1 x33 + 5 x34 + 4 x35 + 2 x36• gurobi & cplex で + 4 x41 + 6 x42 + 3 x43 + 2 x44 + 5 x45 + 1 x46+1 x51 + 6 x52 + 2 x53 + 5 x54 + 4 x55 + 3 x56+3 x61 + 6 x62 + 5 x63 + 1 x64 + 2 x65 + 4 x66解く準備 subject to $x11 + x12 + x13 + x14 + x15 + x16 \le 1$ -lpファイル $x21 + x22 + x23 + x24 + x25 + x26 \le 1$ $x31 + x32 + x33 + x34 + x35 + x36 \le 1$ 条件1 [mwm ex1.lp] $x41 + x42 + x43 + x44 + x45 + x46 \le 1$ $x51 + x52 + x53 + x54 + x55 + x56 \le 1$ $x61 + x62 + x63 + x64 + x65 + x66 \le 1$ $x11 + x21 + x31 + x41 + x51 + x61 \le 1$ x12 + x22 + x32 + x42 + x52 + x62 <= 1 $x13 + x23 + x33 + x43 + x53 + x63 \le 1$ 条件2 $x14 + x24 + x34 + x44 + x54 + x64 \le 1$ x15 + x25 + x35 + x45 + x55 + x65 <= 1x16 + x26 + x36 + x46 + x56 + x66 <= 1binary x11 x12 x13 x14 x15 x16 x21 x22 x23 x24 x25 x26 binary変数(0-1変数)設定 x31 x32 x33 x34 x35 x36 x41 x42 x43 x44 x45 x46 x51 x52 x53 x54 x55 x56 x61 x62 x63 x64 x65 x66 end

最大重みマッチングの求解

• gurobiで解く

gurobi>|m = read('mwm_ex1.lp') Read LP format model from file mwm_ex1.lp Reading time = 0.00 seconds 12 rows, 36 columns, 72 nonzeros gurobi> m.optimize() Gurobi Optimizer version 9.5.2 build v9.5.2rcO (win64) Thread count: 10 physical cores, 20 logical processors, using up to 20 threads Optimize a model with 12 rows, 36 columns and 72 nonzeros Wodel fingerprint: 0xdb4f615a /ariable types: 0 continuous, 36 integer (36 binary) Coefficient statistics: Matrix range [1e+00, 1e+00] Objective range [1e+00, 6e+00] [1e+00, 1e+00] Bounds range RHS range [1e+00. 1e+00] Found heuristic solution: objective 17.0000000 resolve time: 0.00s Presolved: 12 rows, 36 columns, 72 nonzeros Variable types: O continuous, 36 integer (36 binary) Found heuristic solution: objective 24.0000000 Root relaxation: objective 3.000000e+01, 6 iterations, 0.00 seconds (0.00 work units) Nodes Objective Bounds Current Node Work Expl Unexpl | Obi Depth IntInf | Incumbent BestBd It/Node Time Gap I 0 0 30.0000000 30.00000 0.00% - Os Explored 1 nodes (6 simplex iterations) in 0.02 seconds (0.00 work units) Thread count was 20 (of 20 available processors) Solution count 3: 30 24 17 Optimal solution found (tolerance 1.00e-04) Best objective 3.000000000000e+01, best bound 3.00000000000e+01, gap 0.0000%

• gurobiで解いた結果

		ペア	の相]性(重み	.)
W _{ii}	1	2	3	4	5	6
1	3	1	2	5	6	4
2	1	3	5	4	6	2
3	3	6	1	5	4	2
4	4	6	3	2	5	1
5	1	6	2	5	4	3
6	3	6	5	1	2	4

Objective Value: 6+5+6+4+5+4=30

cplexで解く

CPLEX> read mwm_ex1.lp 最大重みマッProblem mwm_ex1, Ip read. Read time = 0.02 sec. (0.00 ticks) /ersioh identifier: 20.1.0.0 | <u>2020-11-10 | 9bedb</u>6d68 Found incumbent of value 0.000000 after 0.00 sec. (0.00 ticks) Tried aggregator 1 time. Reduced MIP has 12 rows, 36 columns, and 72 nonzeros. Reduced MIP has 36 binaries, 0 generals, 0 SOSs, and 0 indicators. Presolve time = 0.00 sec. (0.04 ticks) Probing time = 0.00 sec. (0.02 ticks) Tried aggregator 1 time. Detecting symmetries... Reduced MIP has 12 rows, 36 columns, and 72 nonzeros. Reduced MIP has 36 binaries, 0 generals, 0 SOSs, and 0 indicators. Presolve time = 0.00 sec. (0.05 ticks) Probing time = 0.00 sec. (0.02 ticks) Clique table members: 12. MIP emphasis: balance optimality and feasibility. MIP search method: dynamic search. Parallel mode: deterministic, using up to 20 threads. Root relaxation solution time = 0.00 sec. (0.03 ticks) Nodes Cuts/ Objective IInf Best Integer ItCnt Gap Node Left Best Bound 0.0000 126.0000 0+ 17.0000 0+ $\begin{array}{c} 0 \\ 0 \end{array}$ 126.0000 641.18% 0+ 23.0000 126.0000 447.83% 30.0000 30.0000 12 0.00%integral Elapsed time = 0.02 sec. (0.22 ticks, tree = 0.00 MB, solutions = 4) Root node processing (before b&c): 0.02 sec. (0.22 ticks) Real time Parallel b&c, 20 threads: Real time 0.00 sec. (0.00 ticks) Sync time (average) 0.00 sec. Wait time (average) 0.00 sec. Total (root+branch&cut) = 0.02 sec. (0.22 ticks) Solution pool: 4 solutions saved. MIP - Integer optimal solution: Objective = 3.0000000000e+01 0.02 sec. Iterations = 12 Nodes = 0 Solution time = Deterministic time = 0.22 ticks (14.63 ticks/sec)

cplexで解いた結果

CPLEX> d so v - Incumbent solution	
Variable Name	Solution Value
x16	1.000000
k25	1.000000
x32	1.000000
×41	1.000000
×54	1.000000
×63	1.000000
All_other variable	s in the range 1-36 are 0.

		ペア	の相]性(重み)
W _{ii}	1	2	3	4	5	6
1	3	1	2	5	6	4
2	1	3	5	4	6	2
3	3	6	1	5	4	2
4	4	6	3	2	5	1
5	1	6	2	5	4	3
6	3	6	5	1	2	4

Objective Value: 4+6+6+4+5+5=30

- Python-MIP で解く
 - Python-mip インス

D pip install mip

- MWMの記述1
 - ・グラフ定義
 - •係数設定

nodes: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] edges: [(0, 6), (0, 7), (0, 8), (0, 9), (0, 10), (0, 11), (1, 6), (1, 7), (1

import networkx as nx I = J = range(male) # 添え字範囲設定 G = nx.complete bipartite graph(male,female) # 完全2部グラフ K 6,6 print("nodes:", G.nodes()) # 点集合表示(確認) print("edges: ", G.edges()) # 枝集合表示(確認) ₩ = [[3, 1, 2, 5, 6, 4], # 枝の重み行列 W 作成 [1, 3, 5, 4, 6, 2],[3, 6, 1, 5, 4, 2],[4, 6, 3, 2, 5, 1],[1, 6, 2, 5, 4, 3][3, 6, 5, 1, 2, 4]]for i,j in G.edges(): # K_6,6 なので, i=0..5, j=6..11 であることに注意 G.adi[i][i]['weight'] = W[i][i-6] # 枝に重み'weight'を付加(値は重み行列) pos = {0:(0,3), 1:(0,2), 2:(0,1), 3:(0,0), 4:(0,-1), 5:(0,-2), # 各点の位置图 6:(6,3), 7:(6,2), 8:(6,1), 9:(6,0), 10:(6,-1), 11:(6,-2)ncol = [] # 点の色用ベクトル for i in range(G.number_of_nodes()): ncol.append('yellowgreen') for i in range(6,12): ncol[i] = 'red' edge_labels = nx.get_edge_attributes(G, 'weight') # 枝の属性の'weight'を取得 nx.draw_networkx_nodes(G, pos, node_color=ncol) # 描画:点,点の位置,点の色 nx.draw_networkx_labels(G, pos) # 描画:点のラベル # 描画: 枝 nx.draw_networkx_edges(G, pos) nx.draw_networkx_edge_labels(G, pos, edge_labels) # 描画:枝の重み plt.show()

最大重みマッチングの求解

- MWMの記述3(結果の図示)

GR = nx.Graph() GR.add nodes from(G.nodes()) rwedges = [(0,4+6,W[0][4]),(1,2+6,W[1][2]),(2,3+6,W[2][3]),(3,0+6,W[3][0]),(4,1+6,W[4][1]),(5,5+6,W[5][5])]GR.add_weighted_edges_from(rwedges) nx.draw_networkx_nodes(GR, pos, node_color=ncol) # 描画: 点, 点の位置, 点の色 # 描画: 点のラベル nx.draw_networkx_labels(GR, pos) nx.draw networkx edges(GR, pos) # 描画: 枝 edge_labels = nx.get_edge_attributes(GR, 'weight') nx.draw_networkx_edge_labels(GR, pos, edge_labels) # 描画:枝の重み plt.show() F ペアの相性(重み) W .: IJ **Objective Value:** 6+5+5+4+6+4=30

最短路問題 shortest path problem

 問)グラフG=(V,E)と枝上のコスト(cost)が与えられている.スタート 地点(点1)からゴール地点(点9)まで、コストの総和が最小となる 路(最短路)を求めたい

最短路問題の定式化

• 0-1整数最適化法によるモデル化(定式化)

制約式は、「点iからの流出量の和」と「点iへの流入量の和」との差に関するもので 点iがスタート地点(i=s)なら1,ゴール地点(i=t)なら-1,それ以外なら0とする (スタート点は流出のみで1-0=1,途中点は通る時1-1=0,通らない時0-0=0,ゴール点は流入 のみで0-1=-1ということ、ただし、この制約だけだとスタート点3-2=1,途中点3-3=0,ゴール点 2-3=-1等も実行可能となるが、目的関数が最小化であることより排除される)

Excelソルバーで解く(セル記述)

	А	В	С	D	E	F	G	Н	Ι	J	K	L	M	N
1	最;	短路問題	<u></u>		経路長		点集合	-						
2		枝集合	E	min.	0		V	流出和	流入和		流出和−流入和			
з		i	j	cost	x _{ij}		i	$\Sigma_j x_{ij}$	$\Sigma_j x_{ji}$		$\Sigma_j x_{ij} - \Sigma_j x_{ji}$			
4		1	2	3		start	1	0	0		0	=	1	
5		1	3	2			2	0	0		0	=	0	
6		1	5	5			3	0	0		0	=	0	
7		2	4	2			4	0	0		0	=	0	
8		2	5	5			5	0	0		0	=	0	
9		3	5	2			6	0	0		0	=	0	
10		3	6	1			7	0	0		0	=	0	
11		4	5	3			8	0	0		0	=	0	
12		4	7	2		goal	9	0	0		0	=	-1	
13		5	6	1										
14		5	7	2			【入力	する数式】						
15		5	8	1			<1>	[E2]	= SUMP	RO	DUCT(D4:D19,	E4:	E1 9)
16		6	8	3										
17		7	9	3			<u> <2></u>	[H4]	= SUMIF	=(В	\$4:B\$19, \$G4, \$	6 E\$	4:\$E	\$19)
18		8	7	5					→[H4]を:	コピー	-し,[H4:112]へ貼!	月	け	
19		8	9	3										
20							<3>	[K4]	= H4 - D	[4				
21									→[K4]を:	⊐Ľ -	-し,[K5:K12]へ貼	りた	ht	

Excelで解く
 (ソルバー設定)

ソルバーのパラメーター			×
目的セルの設定:(<u>T</u>)	\$E\$2		±
目標値: 🔘 最大値(<u>M</u>) 💿 最	刘∿値(<u>N</u> ○指定値:(⊻)	0	
変数セルの変更:(<u>B</u>)			
\$E\$4:\$E\$19			1
制約条件の対象:(U)			
\$K\$4:\$K\$12 = \$M\$4:\$M\$12	2	^	追加(<u>A</u>)
			変更(<u>C</u>)
			削除(<u>D</u>)
			すべてリセット(<u>R</u>)
		× [読み込み/保存(<u>し</u>)
☑ 制約のない変数を非負数にす	<u> র(K)</u>		
解決方法の選択: シンプレックス (E)	Z LP	~	オプション(<u>P</u>)
解決方法 滑らかな非線形を示すソルバー間 レックス エンジン、滑らかではない。 ださい。	問題には GRG 非線形エンジン、 非線形を示すソルバー問題には	線形を示すソル/ エポリューショナリー	(-問題には LP シンプ - エンジンを選択してく
ヘルプ(<u>H</u>)		解決(<u>S</u>)	閉じる(<u>O</u>)

		A	В	С	D	E	F	G	Н	Ι	J	K			M
	1	最短	2路問題	Ē.		経路長		点集台	}						
取应而同此	<u>只</u> 2	ł	枝集合 Ⅰ	5	min.	8		V	流出和	流入和		流出和-流入;	ĥ0		
	3		i	j	cost	x _{ij}		i	$\Sigma_j x_{ij}$	$\Sigma_j x_{ji}$		$\Sigma_j x_{ij} = \Sigma_j x$	ji		
	4		1	2	3	0	start	1	1	0			<u>1</u> =	=	1
	5		1	3	2	1		2	0	0			0 =	=	0
 Excelンルハ 			1	5	5	0		3	1	1			0 =	=	-0
			- 2	4 5	2	0		4	U 1	1			0	-	븱
で解した絵			3	5	2	1		6	0	0			$\frac{0}{0}$:	-	尚
く ガキマ・ノ ニ 小口 ,	\mathbf{n}_{10}		3	6	1	0		7	ŏ	Ŭ,			0:	=	ŏ
	11		4	5	3	0		8	1	1			0:	=	0
	12		4	7	2	0	goal	9	0	1			-1 :	= -	-1
	13		5	6	1	0									
	14		5	7	2	0		【入力	する数式】						
	15		5	8	1	1		<1>	[E2]	= SUMP	ROE	DUCT(D4:D1	э, Е	4:E	19
	10		7	8 0	3	0		(0)	Гни]		a p	¢4-8¢10_¢C4	er	ел.	-e E
	18		- / 8	7	5	0		~27	[[]4]	<u>– उ0</u> мп →[H4]र्रु-	ע <u>ה</u> אר	-L. [H4/11/2]^	, ●∟ 目上い)・	_ -0 4 行日	
	19		8	9	3	1				. [] [4] [2]		0,04121			
最適解・最適値 の評価・検証 optimal solution:	3	2	2 5		2	5	4	3	2 2 1	5		3		9	t
1]→[3]→[5]→[8]→[9] Objective Value: 2+2+1+3=8			3		_1		5		3	8					

• gurobi & cplex で 解く準備

minimize

3 x12 + 2 x13 + 5 x15 + 2 x24 + 5 x25 + 2 x35 + 1 x36 + 3 x45 + 2 x47 + 1 x56 + 2 x57 + 1 x58 + 3 x68 + 3 x79 + 5 x87 + 3 x89

subject to x12 + x13 + x15 = 1 x24 + x25 - x12 = 0 x35 + x36 - x13 = 0 x45 + x47 - x24 = 0 x56 + x57 + x58 - x15 - x25 - x35 - x45 = 0 x68 - x36 - x56 = 0 x79 - x47 - x57 - x87 = 0 x87 + x89 - x58 - x68 = 0-x79 - x89 = -1

binary x12 x13 x15 x24 x25 x35 x36 x45 x47 x56 x57 x58 x68 x79 x87 x89 end

• gurobiで解く

解いた結果

optimal solution: $[1] \rightarrow [3] \rightarrow [5] \rightarrow [8] \rightarrow [9]$

> **Objective Value:** 2+2+1+3=8

gurobi><mark>m = read('sp_ex1.lp')</mark> Read LP format model from file sp_ex1.lp Reading time = 0.00 seconds 9 rows, 16 columns, 31 nonzeros gurobi>_m.optimize() Gurobi Optimizer version 9.5.2 build v9.5.2rc0 (win64) Thread count: 10 physical cores, 20 logical processors, using up to 20 threads Optimize a model with 9 rows, 16 columns and 31 nonzeros Model fingerprint: 0x283c1908 /ariable types: 0 continuous, 16 intege<u>r (16 binary)</u> Coefficient statistics: [1e+00, 1e+00] Matrix range Objective range [1e+00, 5e+00] Bounds range [1e+00, 1e+00] [1e+00, 1e+00] RHS range ound heuristic solution: objective 10.0000000 resolve removed 9 rows and 16 columns resolve time: 0.00s 'resolve: All rows and columns removed Explored 0 nodes (0 simplex iterations) in 0.00 seconds (0.00 work units) Thread count was 1 (of 20 available processors) Solution count 2: 8 10 Optimal solution found (tolerance 1.00e-04) Best objective 8.000000000000e+00, best bound 8.00000000000e+00, gap 0.0000% gurobi>m.printAttr('X') Variable Х ×13 gurobi><mark>m.Ob</mark>iVal

• cplexで解く

解いた結果

optimal solution: $[1] \rightarrow [3] \rightarrow [5] \rightarrow [8] \rightarrow [9]$

> Objective Value: 2+2+1+3=8

CPLEX> read sp ex1.lp Problem 'sp_ex1.1p' read. Read time = 0.00 sec. (0.00 ticks) PLEX> opt ersion identifie<u>r: 20</u>.1.0.0 | 2020-11-10 | 9bedb6d68 ried aggregator 5 times. MP Presolve eliminated 1 rows and 5 columns. MP Presolve added 1 rows and 1 columns. Aggregator did 7 substitutions. Reduced MIP has 2 rows, 4 columns, and 6 nonzeros. Reduced MIP has 3 binaries, 1 generals, 0 SOSs, and 0 indicators. ^presolve time = 0.02 sec. (0.06 ticks) Found incumbent of value 8.000000 after 0.02 sec. (0.07 ticks) Root node processing (before b&c): 0.02 sec. (0.07 ticks) Real time Parallel b&c, 20 threads: 0.00 sec. (0.00 ticks) Real time Sync time (average) = 0.00 sec. Wait time (average) 0.00 sec. 0.02 sec. (0.07 ticks) Total (root+branch&cut) = Solution pool: 1 solution saved. MIP - Integer optimal solution: Objective = 8.0000000000e+00 Solution time = 0.02 sec. Iterations = 0 Nodes = 0 (1) Deterministic time = 0.07 ticks (4.43 ticks/sec) CPLEX> d so v -Incumbent solution Variable Name Solution Value <13 <35 <58 .000000 other variables in the range 1-16 are 0.

- Python-MIP で解く
 - Python-mip インストール

D pip install mip

- SPの記述1
 - ・ グラフ定義&係数設定
 - %matplotlib inline import matplotlib.pyplot as plt import networkx as nx

G = nx.DiGraph()
G.add_nodes_from([1,2,3,4,5,6,7,8,9])
G.add_weighted_edges_from([(1,2,3),(1,3,2),(1,5,5),(2,4,2),(2,5,5),(3,5,2),(3,6,1),
 (4,5,3),(4,7,2),(5,6,1),(5,7,2),(5,8,1),(6,8,3),(7,9,3),(8,7,5),(8,9,3)])
pos = {1:(0,3), 2:(1,4), 3:(1,2), 4:(2,5), 5:(2,3), 6:(2,1), 7:(3,4), 8:(3,2), 9:(4,3)}
edge_labels = nx.get_edge_attributes(G, 'weight')

F

nx.draw_networkx_nodes(G, pos)	# 描画:点,点の位置	
nx.draw_networkx_labels(G, pos)	# 描画:点のラベル	
nx.draw_networkx_edges(G, pos)	# 描画:枝	
<pre>nx.draw_networkx_edge_labels(G, pos, edge_labels)</pre>	# 描画:枝の重み	
plt.show()		

-<u>SPの記述3(結果の図示)</u>

Objective Value:

2+2+1+3=8

GR = G.copy()
GR.add_edges_from(spath, color='red') # 最短路の枝を赤色に ecol_dict = nx.get_edge_attributes(GR, "color") # 枝の色属性を取得 ecol = [ecol_dict[p] if p in ecol_dict else 'lightgray' for p in G.edges()] # 最短路以外の枝を薄灰色に nx.draw_networkx_nodes(GR, pos) # 描画:点,点の位置 nx.draw_networkx_labels(GR, pos) # 描画:点のラベル nx.draw_networkx_edges(GR, pos, edge_color=ecol) # 描画:枝,枝の色 nx.draw_networkx_edges(GR, pos, edge_color=ecol) # 描画:枝,枝の色

最大流問題 maximum flow problem

問)グラフG=(V,E)と枝(*i*,*j*)∈E上の容量(capacity) u_{ij}が与えられている.スタート地点(点1)からゴール地点(点9)までものを流すとき, 流量が最大となる流れ(最大流)を求めたい

- 変数設定
 - 実数変数 x_{ij}: 枝(i, j) に流す流量

最大流問題の定式化

・線形最適化法によるモデル化(定式化)

1つ目の制約式は、流量保存則を表す、即ち、start/goal以外の任意の点iについて 「<u>点iからの流出量の和」と「点iへの流入量の和」との差が0(流量保存</u>)である (s[start]/t[goal]は流量保存制約から除外されることに注意)

目的関数は点s[start]の「流出量の和と流入量の和の差」を最大化することとなる

• Excelソルバーで解く(セル記述)

	А	В	С	D	Е	F	G	Н	Ι	J	К	L	M	N
1	最;	大流問题	題 Maxi	mum F	low I	Problem	1	点集合	2					
2		枝集合	E			容量		V	流出和	流入和		流出和−流入和		
3		i	j	x _{ij}		n ij		i	$\Sigma_j x_{ij}$	$\Sigma_j x_{ji}$		$\Sigma_j x_{ij} - \Sigma_j x_{ji}$		
4		1	2		≦	2	start	1	0	0	max.	0		
5		1	3		≦	2		2	0	0		0	=	0
6		1	5		≦	1		3	0	0		0	=	0
7		2	4		≦	1		4	0	0		0	=	0
8		2	5		≦	3		5	0	0		0	=	0
9		3	5		≦	5		6	0	0		0	=	0
10		3	6		≦	2		7	0	0		0	=	0
11		4	5		≦	1		8	0	0		0	=	0
12		4	7		≦	3	goal	9	0	0				
13		5	6		≦	3								
14		5	7		≦	5		【入力	する数式】					
15		5	8		≦	3		<1>	[14]	= SUMIF	(B\$4:E	3\$19, \$H4, \$D\$4	4:\$E	(119)
16		6	8		≦	3				→[I4]をコ	ビーし,[14:J12]へ貼り付け		
17		7	9		≦	2								
18		8	7		≦	5		<u><2></u>	[L4]	= I4 - J	4			
19		8	9		≦	2				→[L4]を=	ゴビーし,	[L5:L12]へ貼り付	t	

Excelで解く
 (ソルバー設定)

ソルバーのパラメーター	×
目的セルの設定:(I) 日標値: ● 日本体(い) ○ 日小体(い) ○ 指定体(い) 0	1
□、暖に、● 最八値(四) ● 最小値(四) ● 指定値・(型) ● 変数セルの変更:(因)	
\$D\$4:\$D\$19 制約条件の対象:(U)	<u> </u>
<pre>\$D\$4:\$D\$19 <= \$F\$4:\$F\$19 \$D\$4:\$D\$19 >= 0</pre>	追加(<u>A</u>)
L\$5:L\$11 = 0	変更(<u>C</u>)
	削除(<u>D</u>)
	すべてリセット(<u>R</u>)
-	読み込み/保存(L)
 制約のない変数を非負数にする(K) 	
解決方法の選択: (E) シンプレックス LP	オプション(P)
解決方法 滑らかな非線形を示すソルバー問題には GRG 非線形エンジン、線形を示すソ レックス エンジン、滑らかではない非線形を示すソルバー問題にはエボリューショナ ださい。	ルバー問題には LP シンプ リー エンジンを選択してく
ヘルプ(<u>H</u>) 解決(<u>S</u>)	閉じる(<u>O</u>)

															_
		88 83	- A F	A B	С	D	E	F	G	Н	Ι	J	K	L	M
Ή₹	テ人に行	[2] 푸티	1 墳	 	題 Maxi	mum F	ow F	^o ro ble m	1	点集合	2				
ר ב	くノヽノノレレ		2	枝集合	E			容量		V	流出和	流入和		流出和─流入和	
			3	i	j	x_{ij}		u ij		i	$\Sigma_j x_{ij}$	$\Sigma_j x_{ji}$		$\Sigma_j x_{ij} = \Sigma_j x_{ji}$	
			4	1	2	1	≦	2	start	1	4	0	max.	4	
			5	1	3	2	≦	2		2	1	1		0	=
•			6	1	5	1	≦	1		3	2	2		0	=
			7	2	4	1	≦	1		4	1	1		0	=
	で船に	ト絵里	8	2	5	0	≦	3		5	3	3		0	=
	し、月午し・ノ	「三日子	9	3	5	2	≦	5		6	0	0		0	=
			10	3	6	0	\leq	2		7	2	2		0	=
			11	4	5	0	≦ /	1		8	2	2		0	=
			12	4	/	1	\geq	3	goal	9	0	4			
			13	5	5	0		3		F 1 + 1	╪ӡ╬╆┿╹				
			14	5	/		<	2			9 QXIU Fial		(D¢4-6	10 0H4 0D04	A - C T
			16	6	8		1	3		NIZ.	[14]	<u>– зом</u> п ⊸Ги]≽⊐	(D04. 1. [ゆうり むしん むしんたい	тр.L
			17	7	9	2	= <	2				·П+1с-1	L 0, [
			18	8	7	0		5		(2)	[14]	= 14 - J	4		
			19	8	9	2	\leq	2		(2)	00.13	→[14]を=	パーレ.]5112]へ貼り付け	+
						_		_				22.32	,		
		1	12	72		1/	1	> (1/3	7			
最谚	5解·最適值			1	/1		3		1		1/5	1		2/2	
の	評価•検証	S						\rightarrow	5						
			2	/2		2	5		T		2/3	3		9)
Ub	jective Valu	e:							$ _2$				2/	2	t

1+2+1=4

3 2 3 8

• gurobi & cplex で 解く準備

maximize

$$x12 + x13 + x15$$

subject to
 $x24 + x25 - x12 = 0$
 $x35 + x36 - x13 = 0$
 $x45 + x47 - x24 = 0$
 $x56 + x57 + x58 - x15 - x25 - x35 - x45 = 0$
 $x68 - x36 - x56 = 0$
 $x79 - x47 - x57 - x87 = 0$
 $x87 + x89 - x58 - x68 = 0$
bound
 $x12 <= 2$
 $x13 <= 2$
 $x13 <= 2$
 $x15 <= 1$
 $x24 <= 1$
 $x24 <= 1$
 $x25 <= 3$
 $x35 <= 5$
 $x36 <= 2$
 $x45 <= 1$
 $x47 <= 3$
 $x56 <= 3$
 $x57 <= 5$
 $x58 <= 3$
 $x68 <= 3$
 $x79 <= 2$
 $x87 <= 5$
 $x89 <= 2$
end

• gurobiで解く

解いた結果

gurobi>|m = read('mf_ex1.lp') Read LP format model from file mf_ex1.lp Reading time = 0.00 seconds rows, 16 columns, 27 nonzeros gurobi> m.optimize() Gurobi Optimizer version 9.5.2 build v9.5.2rc0 (win64) Thread count: 10 physical cores, 20 logical processors, using up to 20 threads Optimize a model with 7 rows, 16 columns and 27 nonzeros lodel fingerprint: 0x1f836c96 Coefficient statistics: Matrix range [1e+00, 1e+00] Objective range [1e+00, 1e+00] [1e+00, 5e+00] Bounds range RHS range [0e+00, 0e+00] resolve removed 0 rows and 1 columns resolve time: 0.00s 'resolved: 7 rows, 15 columns, 26 nonzeros Iteration Primal Inf. Dual Inf. Objective Time 5.0000000e+00 0.000000e+00 6.000000e+00 0s 0 4.0000000e+00 0.000000e+00 0.000000e+00 0s Solved in 7 iterations and 0.00 seconds (0.00 work units) Optimal_objective_4_000000000e+00 gurobi> m.printAttr('X') Variable Х ×12 ×13 ×15 ×24 ×35 ×45 ×57 ×58 ×79 ×89 212222 gurobi><mark>m.Ob</mark>jVal 4.0

• cplexで解く

解いた結果

CPLEX> read mf_ex1.lp Problem 'mf_ex1.lp' read. Read time = 0.00 sec. (0.00 ticks) PLEX> opt ersion identifier: 20.1.0.0 | 2020-11-10 | 9bedb6d68 ried aggregator 1 time. LP Presolve eliminated 0 rows and 1 columns. Reduced LP has 7 rows, 15 columns, and 26 nonzeros. Presolve time = 0.02 sec. (0.01 ticks) Initializing dual steep norms . . . Iteration log . . . 1 Dual objective Iteration: 4.000000 Dual simplex - Optimal: Objective = 4.0000000000e+00 Solution time = 0.02 sec. Iterations = 2 (0) Deterministic time = 0.02 ticks (1.18 ticks/sec) CPLEX≻<mark>ld so v</mark> -Variable Name Solution Value ×12 ×13 ×25 ×35 ×56 ×57 ×68 ×79 2 000000 other variables in the range 1-16 are 0.

- Python-MIP で解く
 - Python-mip インストー

D pip install mip

- MFの記述1
 - ・グラフ定義&係数設定
 - %matplotlib inline import matplotlib.pyplot as plt import networkx as nx

⊡

```
pos = \{1:(0,3), 2:(1,4), 3:(1,2), 4:(2,5), 5:(2,3), 6:(2,1), 7:(3,4), 8:(3,2), 9:(4,3)\}
edge_labels = nx.get_edge_attributes(G, 'weight')
```

```
nx.draw_networkx_nodes(G, pos, node_color='teal') # 描画:点,点の位置,点の色
nx.draw_networkx_labels(G, pos) # 描画:点のラベル
nx.draw_networkx_edges(G, pos) # 描画:枝
nx.draw_networkx_edge_labels(G, pos, edge_labels) # 描画:枝の重み(容量)
plt.show()
```


- MFの記述3(結果の図示)

Objective Value:

1+1+2=4

GR = G.copy()

GR.add_edges_from(mflow, color='blue') # 最大流の枝を青色に ecol_dict = nx.get_edge_attributes(GR, "color") # 枝の色属性を取得 ecol = [ecol_dict[p] if p in ecol_dict else 'lightgray' for p in G.edges()] # 最大流以外の枝を薄灰色に

```
for (i,j) in GR.edges():
    GR.adj[i][j]["weight"] = x[i][j].x
edge_labels = nx.get_edge_attributes(GR, "weight")
```


最小カット問題 minimum cut problem

問)グラフG=(V,E)と枝(*i*,*j*)∈E上の容量(capacity) *u_{ij}*が与えられている.スタート点(点1)を含む点集合をS,ゴール点(点9)を含む点集合をTとし、点集合VをSとTに2分割したい.

SとTをまたぐ枝(Sの点→Tの点への出枝)の枝集合を<u>STカット</u>とよぶ 容量が最小となるSTカットを求める問題を<u>最小カット問題</u>とよぶ

*ST*カット={(2,4),(2,5),(1,5),(3,5),(6,8)}, STカットの容量=13

最小カット問題 minimum cut problem

問)グラフG=(V,E)と枝(*i*,*j*)∈E上の容量(capacity) *u_{ij}*が与えられている.スタート点(点1)を含む点集合をS,ゴール点(点9)を含む点集合をTとし、点集合VをSとTに2分割したい.

- 0-1変数y_i: 点 i が集合Sに含まれるとき1, Tに含まれるとき0
- 0-1変数z_{ij}: 枝(i, j) がSTカットに含まれる枝なら1, 違うなら0

最小カット問題の定式化

• 0-1整数最適化法によるモデル化(定式化)

$$\begin{array}{l} \mbox{min.} & \sum_{(i,j)\in E} u_{ij} z_{ij} \\ s.t. & y_i - y_j \leq z_{ij} \ (\forall (i,j)\in E) & ... 1 \\ y_s = 1, y_t = 0 & ... 2 \\ z_{ij} \in \{0,1\} \ (\forall (i,j)\in E) \\ y_i \in \{0,1\} \ (\forall i\in V) \end{array} \right) \\ \end{array}$$

 $y_i y_j$

1

1

0

0

1

0

1

0

 \rightarrow

 \rightarrow

 \rightarrow

 \rightarrow

 Z_{ii}

0 or 1

1

0 or 1

0 or 1

最小カット問題の定式化

• Excelへの記述

	A	В	С	D	E	F	G	Н	Ι	J	K	L	M	N	0	Ρ	Q
1	最小カット	問題 minin	ոստ Եւ	it pro	blem				S	T力ット 容量	₹ l						
2		点集合₽			枝集	合 E	容量		min.				カット 制約		スタート/ゴ	-)	ノ制約
з		i	y _i		i	j	u _{ij}	z _{ij}					$y_i - y_j$				
4		1			1	2	2					1				=	1
5		2			1	3	1					- 2				=	0
6		3			1	5	2					3					
7		4			2	4	1					- 4					
8		5			2	5	3					5					
9		6			3	5	5					6					
10		7			3	6	2					- 7					
11		8			4	5	1					8					
12		9			4	7	3					9					
13					5	6	3					10					
14	スタート点	1			5	7	5					11					
15	ゴール点	9			5	8	3					12					
16					6	8	3					13					
17					7	9	2					14					
18					8	7	5					15					
19					8	9	2					16					
20																	
21		【入力する	数式】														
22		制約①	[M4]	= V	LOO	KUP(E4, B	\$4:C\$12,	2, E	ALSE) -	VLC)Ok	(UP(F4, E	3\$4	:0\$12, 2,	FAL	SE)
23				→[N	14]を=	ıĽ−l	∠,[M5	:M19]へ貼	ノ付け	-							
24																	
25		制約②	[04]	= V	LOO	KUP(B14,	\$B\$4:\$C\$	312,	2, FALSE)						
26				→[C	04]を=	ピー	, [O5	へ助け	ţ								
27																	
28		目的関数	[J2]	= S	UMPF	RODU	JCT((G4:G19, H	4:H1	9)							

最小カット問題の定式化

ソルバー設定

日的セルの記字・/エ)		+3+2		
目的セルの設定:(工)		\$J\$2		T
目標値: 〇 最大値(M]) ④ 最小値(№ ○指定値:(⊻) 0	
変数セルの変更:(<u>B</u>)				
\$C\$4:\$C\$12,\$H\$4:\$	H\$19			1
制約条件の対象:(<u>U</u>)				
\$C\$4:\$C\$12 = バイナ \$H\$4:\$H\$19 = バイナ	บ -บ		^ [追加(<u>A</u>)
\$M\$4:\$M\$19 <= \$H \$O\$4:\$O\$5 = \$Q\$4	\$4:\$H\$19 \$Q\$5			変更(<u>C</u>)
				削除(<u>D</u>)
				すべてリセット(<u>R</u>)
				読み込み/保存(<u>し</u>)
□ 制約のない変数を非	負数にする(<u>K</u>)			
解決方法の選択: シ (E)	ンプレックス LP		~	オプション(P)
解決方法				
滑らかな非線形を示す レックス エンジン、滑らか ださい。	ハルバー問題には ではない非線形	t GRG 非線形エン を示すソルバー問題	ジン、線形を示すソル 駆にはエボリューショナ!	ルバー問題には LP シンプ J− エンジンを選択してく
へルゴ(H)			解决(S)	問じる(0)

最小カット問題

• gurobi & cplex で 解く準備

> - lpファイル [mc ex1.lp]

minimize 2 x12 + 2 x13 + x15 + x24 + 3 x25 + 5 x35 + 2 x36 + x45+3 x47 + 3 x56 + 5 x57 + 3 x58 + 3 x68 + 2 x79 + 5 x87 + 2 x89subject to $y1 - y2 - x12 \le 0$ v1 - v3 - x13 <= 0 y1 - y5 - x15 <= 0 y2 - y4 - x24 <= 0 y2 - y5 - x25 <= 0 y3 - y5 - x35 <= 0 y3 - y6 - x36 <= 0 y4 - y5 - x45 <= 0 y4 - y7 - x47 <= 0 v5 - v6 - x56 <= 0 y5 - y7 - x57 <= 0 y5 - y8 - x58 <= 0 y6 - y8 - y68 <= 0 y7 - y9 - x79 <= 0 y8 - y7 - x87 <= 0 y8 - y9 - x89 <= 0 y1 = 1v9 = 0binary x12 x13 x15 x24 x25 x35 x36 x45 x47 x56 x57 x58 x68 x79 x87 x89 y1 y2 y3 y4 y5 y6 y7 y8 y9 end

最小カット問題の求解

• gurobiで解く

解いた結果

gurobi>	m.printAttr('X')
Var	iable	Х
	x79	1
	xos vl	
	у2 у <u>3</u>	1
	уб у4	1
	ע6 7ע	1
gurobi≻	v8 m.ObiVal	1
4 .0		

gurobi><mark>m = read('mc_ex1.lp')</mark> Read LP format model from file mc_ex1.lp Reading time = 0.00 seconds 18 rows, 26 columns, 50 nonzeros gurobi>|m.optimize() Gurobi Optimizer version 9.5.2 build v9.5.2rc0 (win64) Thread count: 10 physical cores, 20 logical processors, using up to 20 threads Optimize a model with 18 rows, 26 columns and 50 nonzeros Model fingerprint: Oxbe696f14 Variable types: 1 continuous, 25 integer (25 binary) Coefficient statistics: [1e+00, 1e+00] Matrix range [1e+00, 5e+00] [1e+00, 1e+00] Objective range Bounds range RHS range [1e+00, 1e+00] Found heuristic solution: objective 5.0000000 Presolve removed 11 rows and 18 columns ^oresolve time: 0.00s resolved: 7 rows, 8 columns, 17 nonzeros Variable types: O continuous, 8 integer (8 binary) Root relaxation: objective 4.000000e+00, 2 iterations, 0.00 seconds (0.00 work units) Current Node Objective Bounds Nodes Work Obi Depth IntInf | Incumbent Expl Unexpl | BestBd It/Node Time Gap 4.0000000 4.00000 0.00% Ĥ 0sExplored 1 nodes (2 simplex iterations) in 0.01 seconds (0.00 work units) Thread count was 20 (of 20 available processors) Solution count 2: 4 5 Optimal solution found (tolerance 1.00e-04) Best objective 4.000000000000e+00, best bound 4.00000000000e+00, gap 0.0000%

最小カット問題の	CPLEX read mc_ex1,1p Problem mc_ex1.1p read. Read time = 0.00 sec. (0.00 ticks) CPLEX opt Version identifier: 12.10.0.0 2019-11-26 843d4de2ae Tried aggregator 2 times.
• cplexで解く	MIP Presolve eliminated 5 rows and 11 columns. MIP Presolve added 1 rows and 1 columns. Aggregator did 5 substitutions. Reduced MIP has 9 rows, 11 columns, and 23 nonzeros. Reduced MIP has 10 binaries, 1 generals, 0 SOSs, and 0 indicators. Presolve time = 0.00 sec. (0.04 ticks) Found incumbent of value 5.000000 after 0.00 sec. (0.05 ticks) Probing time = 0.00 sec. (0.00 ticks)
 解いた結果 	Tried aggregator 1 time. Detecting symmetries MIP Presolve eliminated 1 rows and 1 columns. MIP Presolve added 1 rows and 1 columns. Reduced MIP has 9 rows, 11 columns, and 23 nonzeros. Reduced MIP has 10 binaries, 1 generals, 0 SOSs, and 0 indicators. Presolve time = 0.00 sec. (0.02 ticks) Probing time = 0.00 sec. (0.00 ticks) Clique table members: 5. MIP emphasis: balance optimality and feasibility. MIP search method: dynamic search. Parallel mode: deterministic, using up to 4 threads. Root relaxation solution time = 0.00 sec. (0.02 ticks)
CPLEX> d so v - Incumbent solution Variable Name Solution Value	Nodes Cuts/ Node Left Objective IInf Best Integer Best Bound ItCnt Gap * 0+ 0 5.0000 0.0000 100.00% * 0+ 0 0.0000 100.00% 0 0 cutoff 4.0000 4.0000 5 0.00% 0 0 cutoff 4.0000 4.0000 5 0.00% Elapsed time = 0.05 sec. (0.12 ticks, tree = 0.01 MB, solutions = 2) 5 0.00%
x/9 1.000000 x89 1.000000 y1 1.000000 y2 1.000000 y3 1.000000 y5 1.000000 y4 1.000000 y6 1.000000 y7 1.000000 y8 1.000000 All other variables in the range 1-26 are 0. CPLEX> _	Root node processing (before b&c): Real time = 0.05 sec. (0.12 ticks) Parallel b&c, 4 threads: Real time = 0.00 sec. (0.00 ticks) Sync time (average) = 0.00 sec. Wait time (average) = 0.00 sec. Total (root+branch&cut) = 0.05 sec. (0.12 ticks) Solution pool: 2 solutions saved. MIP - Integer optimal solution: Objective = 4.0000000000e+00 Solution time = 0.05 sec. Iterations = 5 Nodes = 0 Deterministic time = 0.12 ticks (2.55 ticks/sec)

- Python-MIP で解く
 - Python-mip インストー

D pip install mip

- MCの記述1
 - ・ グラフ定義&係数設定
 - %matplotlib inline import matplotlib.pyplot as plt import networkx as nx

G = nx.DiGraph() G.add_nodes_from([1,2,3,4,5,6,7,8,9]) G.add_weighted_edges_from([(1,2,2),(1,3,2),(1,5,1),(2,4,1),(2,5,3),(3,5,5),(3,6,2), (4,5,1),(4,7,3),(5,6,3),(5,7,5),(5,8,3),(6,8,3),(7,9,2),(8,7,5),(8,9,2)])

```
pos = {1:(0,3), 2:(1,4), 3:(1,2), 4:(2,5), 5:(2,3), 6:(2,1), 7:(3,4), 8:(3,2), 9:(4,3)} # 各点の位置座標設定
edge_labels = nx.get_edge_attributes(G, 'weight')
```

```
nx.draw_networkx_nodes(G, pos, node_color='pink') # 描画:点,点の位置,点の色
nx.draw_networkx_labels(G, pos) # 描画:点のラベル
nx.draw_networkx_edges(G, pos) # 描画:枝
nx.draw_networkx_edge_labels(G, pos, edge_labels) # 描画:枝の重み(容量)
plt.show()
```


最小カット問題の求解

- MCの記述3(結果の図示)

Objective Value:

2+2=4

GR = G.copy() GR.add_edges_from(mcut, color='red') # 最小カットの枝を赤色に ecol_dict = nx.get_edge_attributes(GR, "color") # 枝の色属性を取得 ecol = [ecol_dict[p] if p in ecol_dict else 'lightgray' for p in G.edges()] # 最小カット以外の枝を薄灰色に nx.draw_networkx_nodes(GR, pos, node_color='pink') # 描画:点,点の位置,点の色 nx.draw_networkx_labels(GR, pos) # 描画:点のラベル nx.draw_networkx_edges(GR, pos, edge_color=ecol) # 描画:枝の色 nx.draw_networkx_edges(GR, pos, edge_color=ecol) # 描画:枝の重み plt.show()

【補足】最大流と最小カットの関係

・最大フロー・最小カット定理(max-flow min-cut theorem)
 > th) 最大フローが存在するとき,

最大流量 = 最小カット容量

(資料の例題では, [最大流量 4] = [最小カット容量 4] で一致)

- 最大流問題を<u>主問題(P)</u>としたとき、最小カット問題が<u>双</u> 対問題(D)となる
 - ▶ 最大フロー・最小カット定理は, 双対定理の特殊ケース
- 双対定理(Duality Theorem)

▶ th) LPの主問題(P)と双対問題(D)がどちらも実行可能なら、いずれも最適解を持ち最適値が一致する

最小カット問題 minimum cut problem

• 演習) グラフG=(V,E) について, s=1, t=7 の最小カットを求めよ

最小費用流問題 minimum cost flow problem

• 例題

【演習】

グラフG=(V,E)と枝 $(i,j) \in E$ 上のコスト $(cost) c_{ij}$ と容量 $(capacity) u_{ij}$ が与えられている 与えられた<mark>需要点の需要と供給点の供給量</mark>を満たすフローを考える <u>実行可能なフローflowのうちで費用最小となるもの</u>を求めよ

LPに定式化して Excel Solver で求解せよ (LPファイルで定式化を書くより, Excel の方が定式化が楽)

✓ それ以外の点 $i \in V$ について $b_i = 0$ (流量保存)

最小費用流問題の定式化

• Excelへの記述

	A	В	С	D	Е	F	G	Н	Ι	J	К	L	M	N		0	Р
1	最小費用流問題			最小費用					点集合								
2		枝集合	E	min.						V	流出和	流入和		流出和一	流入和		
3		i	j	c _{ij}	x_{ij}		capacity			i	$\Sigma_j x_{ij}$	$\Sigma_j x_{ji}$		$\Sigma_j x_{ij} =$	$\Sigma_j x_{ji}$		需要供給
4		1	3	2		≦	30		供給	1						=	50
5		1	4	3		≦	40		供給	2						=	60
6		2	3	1		≦	20			3						=	0
7		2	4	2		≦	50			4						=	0
8		3	5	1		≦	40			5						=	0
9		3	6	3		≦	20			6						=	0
10		4	6	5		≦	50			7						=	0
11		4	7	2		≦	30			8						=	0
12		5	6	1		≦	20			9						=	0
13		5	8	3		≦	30		需要	10						=	-35
14		6	7	1		≦	20		需要	11						=	-45
15		6	8	2		≦	40		需要	12						=	-30
16		6	9	3		≦	30										
17		7	9	2		≦	40			【入力	する数式						
18		8	10	- 4		≦	40			<1>	[K4]	= SUMI	-(В	\$4:B\$24,	\$J4, \$	E\$	4:\$E\$24)
19		8	11	1		≦	10					→[K4]を:	⊐Ľ -	-U, [K4:L1	5]へ貼	リ付	15
20		8	12	3		≦	30										
21		9	8	1		≦	10			<2>	[N4]	= K4 - I	L4 -				
22		9	10	2		≦	20					→[N4]を:	コピー	-U, [N5:N	15]へ貼	辺た	1) J
23		9	11	2		≦	40										
24		9	12	2		≦	20		目的	関数	[E2]	= SUMP	ROE	DUCT(D4	4:D24,	E4:	E24)
25																	

最小費用流問題の定式化

ソルバー設定

リルバーのパラメーター				2	×
目的セルの設定:(工)		\$E\$2		Ť	
目標値: 〇 最大値	₫(<u>M) ● 最小値(N</u>	○指定値:(⊻)	0		
変数セルの変更:(<u>B</u>)	1				
\$E\$4:\$E\$24				Ť	
制約条件の対象:(<u>U</u>)				
\$E\$4:\$E\$24 <= 9 \$E\$4:\$E\$24 >= 0	\$G\$4:\$G\$24)		^ [追加(<u>A</u>)	
\$N\$4:\$N\$15 = \$	P\$4:\$P\$15			変更(<u>C</u>)	
				削除(<u>D</u>)	
				すべてリセット(<u>R</u>)	
			~ [読み込み/保存(<u>し</u>)	
□ 制約のない変数	を非負数にする(<u>K</u>)		L		
解決方法の選択: (E)	シンプレックス LP		~	オプション(P)	
解決方法					
滑らかな非線形を示 レックス エンジン、滑 ださい。	ミすソルバー問題には G らかではない非線形をえ	RG 非線形エンジン、 示すソルバー問題には	線形を示すソル エボリューショナ!	レバー問題には LP シンプ リー エンジンを選択してく	
ヘルプ(<u>H</u>)			解決(<u>S</u>)	閉じる(<u>O</u>)]

最小費用流問題の求解

• Excelソルバーで解いた結果

	А	В	С	D	Е	F	G	Н	Ι	J	К	L	M	N	Ο	Р
1	最小費用流問題		題		最小費用					点集合						
2		枝集合	E	min.	1055					V	流出和	流入和		流出和一流入和		
3		i	j	c _{ij}	x _{ij}		capacity			i	$\Sigma_j x_{ij}$	$\Sigma_j x_{ji}$		$\Sigma_j x_{ij} = \Sigma_j x_{ji}$		需要供給
4		1	3	2	30	≦	30		供給	1	50	0		50	=	50
5		1	4	3	20	\leq	40		供給	2	60	0		60	=	60
6		2	3	1	20	≦	20			3	50	50		0	=	0
7		2	4	2	40	≦	50			4	60	60		0	=	0
8		3	5	1	40	≦	40			5	40	40		0	=	0
9		3	6	3	10	≦	20			6	60	60		0	=	0
10		4	6	5	30	≦	50			7	40	40		0	=	0
11		4	7	2	30	≦	30			8	40	40		0	=	0
12		5	6	1	20	≦	20			9	70	70		0	=	0
13		5	8	3	20	≦	30		需要	10	0	35		-35	=	-35
14		6	7	1	10	≦	20		需要	11	0	45		-45	=	-45
15		6	8	2	20	≦	40		需要	12	0	30		-30	=	-30
16		6	9	3	30	≦	30									
17		7	9	2	40	≦	40			【入力	する数式】					
18		8	10	4	15	≦	40			<u><1></u>	[K4]	= SUMIF	(В	\$4:B\$24, \$J4, \$	E\$	4:\$E\$24)
19		8	11	1	10	≦	10					→[K4]を	コピ -	<u>-し,[K4:L15]へ貼</u>	リ付	11
20		8	12	3	15	≦	30									
21		9	8	1	0	≦	10			<2>	[N4]	= K4 – I	_4			
22		9	10	2	20	≦	20					→[N4]を	⊐Ľ -	-し,[N5:N15]へ貼	辺で	カナ
23		9	11	2	35	≦	40									
24		9	12	2	15	≦	20		目的	関数	[E2]	= SUMP	RO	DUCT(D4:D24,	E4:	E24)

最小費用流問題の求解

• gurobi & cplex で解く準備

```
- lp \nabla r \Lambda [mcf_ex1.lp]
```

x910 + x911 + x912 - x69 - x79 = 0

minimize 2 x13 + 3 x14 + x23 + 2 x24 + x35 + 3 x36 + 5 x46 + 2 x47 + x56 + 3 x58 + x67 + 2 x68 + 3 x69 + 2 x79 + 4 x810 + x811 + 3 x812 + x98 + 2 x910 + 2 x911 + 2 x912

```
subject to

x13 + x14 = 50

x23 + x24 = 60

x35 + x36 - x13 - x23 = 0

x46 + x47 - x14 - x24 = 0

x56 + x58 - x35 = 0

x67 + x68 + x69 - x36 - x46 - x56 = 0

x79 - x47 - x67 = 0

x810 + x811 + x812 - x58 - x68 - x98 = 0
```

-x810 - x910 = -35

-x811 - x911 = -45

-x812 - x912 = -30

bound
x13 <= 30
x14 <= 40
x23 <= 20
x24 <= 50
x35 <= 40
x36 <= 20
x46 <= 50
x47 <= 30
x56 <= 20
x58 <= 30
x67 <= 20
x68 <= 40
x69 <= 30
x79 <= 40
x810 <= 40
x811 <= 10
x812 <= 30
x98 <= 10
x910 <= 20
x911 <= 40
x912 <= 20

end

最小費用流問題の求解

• gurobiで解く	gurobi> <mark>m = read('mcf_ex1.lp')</mark> Read LP format model from file mcf_ex1.lp
_	Keading time = 0.00 seconds : 12 rows, 21 columns, 41 nonzeros
	gurobi>m.optimize()
	Gurobi Uptimizer version 9.5.2 build v9.5.2rcU (win64) Thread count: 10 physical cores, 20 logical processors, using up to 20 th
	Optimize a model with 12 rows, 21 columns and 41 nonzeros
 ・ 解いた結果 	Model fingerprint: 0xc556d62e Coofficient statistics:
	Matrix range [1e+00, 1e+00]
gurobi>[m.printAttr(`X`)	Objective range [1e+00, 5e+00]
Variable X	Bounds range [le+01, be+01] RHS range [3e+01, 6e+01]
	Presolve removed 5 rows and 6 columns
×14 20	Presolve time: U.UUs Presolved: 7 rows 15 columns 29 popzeros
×23 20	rresorved, rrows, to cordinas, zo nonzeros
×24 40 ×35 40	Iteration Objective Primal Inf. Dual Inf. Time
×36 10	9 1.0550000e+03 0.000000e+00 0.000000e+00 0s
×46 30 ×47 30	
x56 10	Solved in 9 iterations and 0.01 seconds (0.00 work units) Optimal objective 1.055000000e+03
×58 30 ×67 10	
x68 10	
×69 30	
×810 40	
×811 10	
×812 15 ×910 20	
×911 <u>35</u>	
x912 15 gurabila DhiVal	

reads

最小費用流問題の支留

• cplexで解く

解いた結果

Problem mcf_ex1.1p Problem mcf_ex1.1p read. Read time = 0.00 sec. (0.00 ticks) CPLEX> opt Version identifier: 12.10.0.0 | 2019-11-26 | 843d4de2ae Tried aggregator 1 time. LP Presolve eliminated 0 rows and 1 columns. Aggregator did 5 substitutions. Reduced LP has 7 rows, 15 columns, and 29 nonzeros. Presolve time = 0.02 sec. (0.01 ticks) Initializing dual steep norms . . .

Iteration log . . . Iteration: 1 Dual objective =

650.000000

Dual simplex - Optimal: Objective = 1.0550000000e+03 Solution time = 0.02 sec. Iterations = 8 (0) Deterministic time = 0.03 ticks (1.71 ticks/sec)

CPLEX> d so v -	
Variable Name	Solution Value
×13	30.000000
×14	20.000000
×23	20.000000
×2 <u>4</u>	40.000000
x35	40.000000
x36	10.000000
×4 <u>6</u>	30.000000
×47	30.000000
x56	20.000000
x28	20.000000
×68	35.000000
xēà	25.000000
x/9	30.000000
XXIV	15.000000
X811	10.000000
X812	30.000000
xain	20.00000
X911	35.000000
All other variables in ODLEVA	the range I-21 are U
UPLEX>	

・最小費用流問題は、最短路問題と最大流問題を含む
 ▶最小費用流問題の定式化において以下の設定をすれば良い

✓スタート点*i*=s について,
$$b_s=1$$
 ✓ゴール点*i*=t について, $b_t=-1$
 ✓それ以外の点*i* について, $b_i=0$
 ✓全ての枝(*i*,*j*)の容量 $u_{ij}=\infty$

▶最小費用流問題の定式化において以下の設定をすれば良い

 ✓スタート点*i*=s について, *b_s=f* ※*f*=∑*c_{si}x_{sj}-∑<i>c_{js}x_{js}* ✓ゴール点*i*=t について, *b_t=-f* ※この流量制約冗長(削除可)
 ✓それ以外の点*i* について, *b_i=0* ✓スタート点からの枝(*s,j*)のコスト *c_{sj}=1* ✓それ以外の枝(*i,j*)のコスト *c_{sj}=0*

参考文献

- 1. 今野浩「線形計画法」日科技連(1987)
- 2. 藤田・今野・田邉「最適化法」 岩波書店(1994)
- 3. 田村明久・村松正和「最適化法」共立出版(2002)
- 4. 坂和正敏「線形計画法の基礎と応用」 朝倉書店(2012)
- 5. 小島・土谷・水野・矢部 「内点法」 朝倉書店 (2001)
- 6. *A. Schrijver: Theory of Linear and Integer Programming, John Wiley and Sons,* 1986.
- 7. L.A. Wolsey: Integer Programming, John Wiley and Sons, 1998.
- 8. *M. Conforti, G. Cornuejols and G.Zambelli: Integer Programming, Springer, 2014.*
- 9. 久保幹雄, J.P.ペドロソ, 村松正和, A.レイス: あたらしい数理最適化, 近代科学社,2012.
- 10. 久保幹雄,小林和博,斉藤努,並木誠,橋本英樹: Python言語によるビジネスアナリティクス,近代科学社,2016.