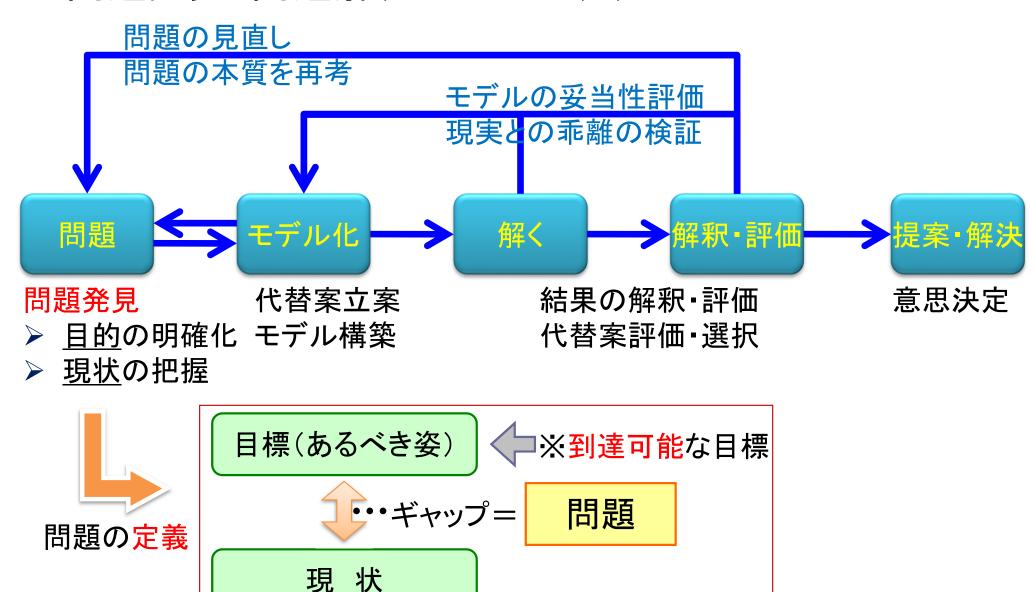
## 問題解決技法入門

# 2. Graph / Optimization 3. Shortest Path Problem



## 問題解決とは?

> 問題発見・問題解決から意思決定まで



ルート探索

問)今,<u>堀川丸太町交差点</u>にいる.大通りのみを使い 八坂神社に行きたい.どこを通れば早く着けるか?



ルート探索

問)今,<u>堀川丸太町交差点</u>にいる.大通りのみを使い 八坂神社に行きたい.どこを通れば早く着けるか?

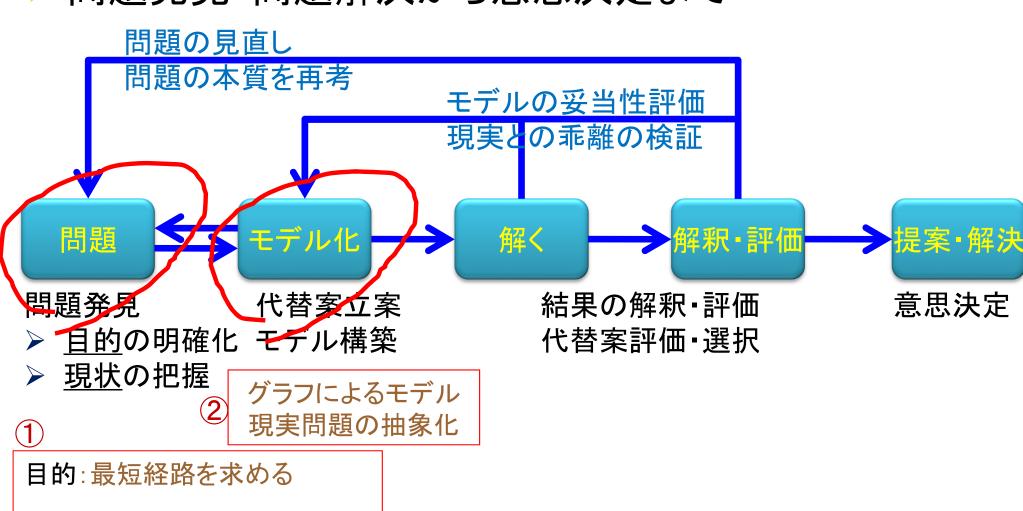


# 問題解決とは?

現状:データが与えられている

最短経路が求まっていない

> 問題発見・問題解決から意思決定まで

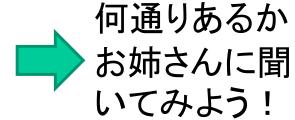


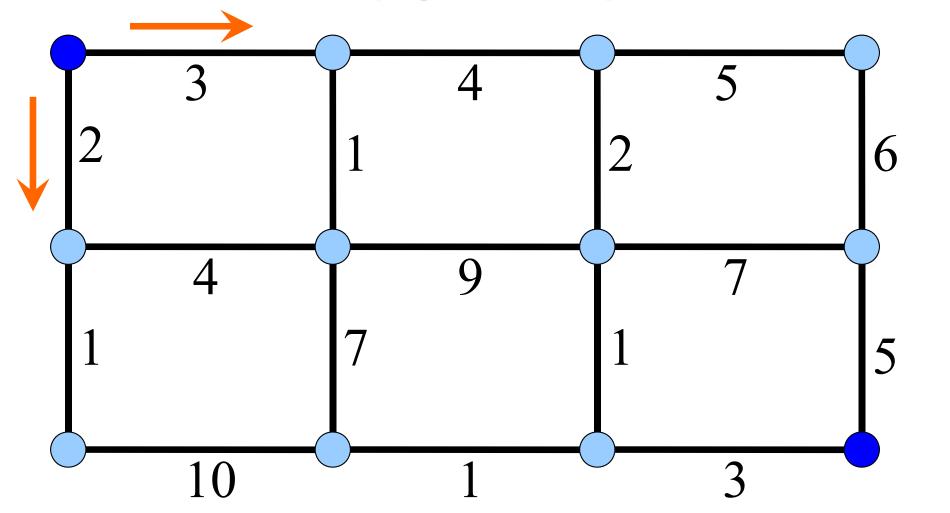
# 解く:どうやって解くか?

youtube [erato お姉さん]で検索

全ての経路を調べ,

その中から最も短い経路を選べば良い! 〔素朴で素直な方法=全列拳, しらみつぶし〕





# 難しいなら易しくすればいいのさ!

OR的問題解決のヒント 問題を簡単にする!

> 問題の一部だけを考える 条件を付加して易しくする

ここだけで考えて上手くいけば, 全体に広げられるかも!

問題の全体

制限した問題

任意のグラフの最短路問題

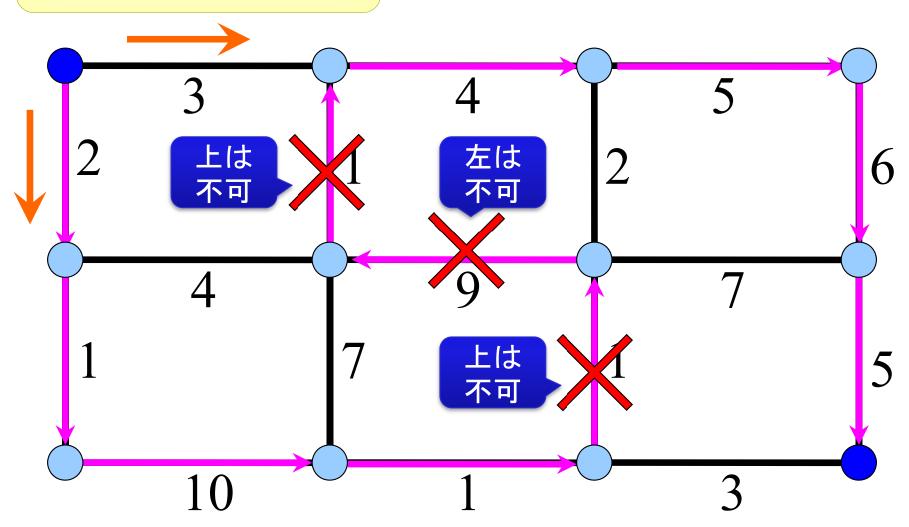
制限した問題

- 格子グラフだけを扱う
- 出発地:左上点,目的地:右下点に固定
- 移動は右・下方向へのみ可

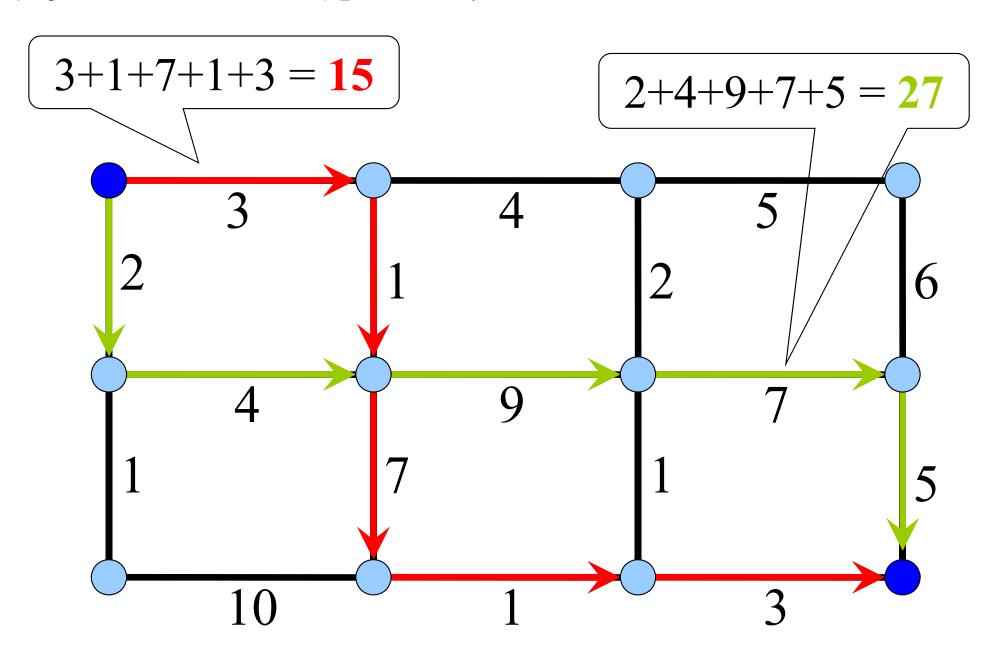
# 難しいなら易しくすればいいのさ!

制限した問題

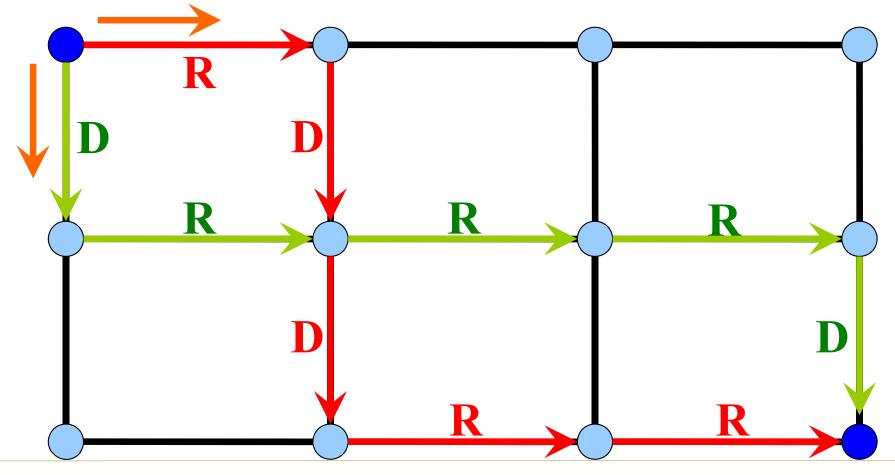
- •格子グラフ
- •出発地:左上点,目的地:右下点
- •移動は右・下方向へのみ



# 難しいなら易しくすればいいのさ!



# さて、経路は全部で幾つあるのか?



Point: どんな経路も, 順番を無視すれば, R=3回, D=2回使う

緑の経路=DRRRD

赤の経路=RDDRR

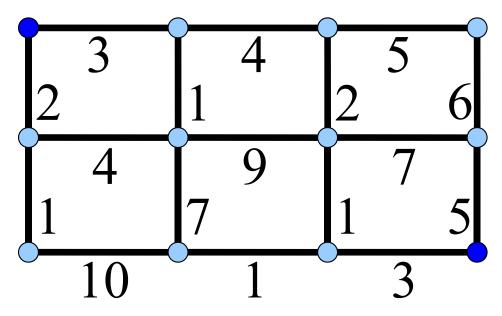
$$=\frac{(R+D)!}{R!D!}$$
 通り

i.e., (R+D)の椅子へのDの座らせ方を決めれば良い $\rightarrow_{R+D}C_D$ 

例では <sub>3+2</sub>C<sub>2</sub>= 10 通り

# 演習: やってみよう! 全列挙

• Q: スタート(左上)からゴール(右下)へと至る最短経路 を求めなさい. そしてそれが最短だと示しなさい



A: 全列挙したよ

**1) DDRRR:** 2+1+10+1+3=17

**② DRDRR:** 2+4+7+1+3=17

③ **DRRDR:** 2+4+9+1+3=19

**4 DRRRD**: 2+4+9+7+5=27

**⑤ RDDRR:** 3+1+7+1+3=15

**6 RDRDR:** 3+1+9+1+3=17

**7 RDRRD:** 3+1+9+7+5=25

**8 RRDDR:** 3+4+2+1+3=**13** 

**9 RRDRD:** 3+4+2+7+5=21

の10通り計算し8が最短だ!⑩RRRDD: 3+4+5+6+5=23

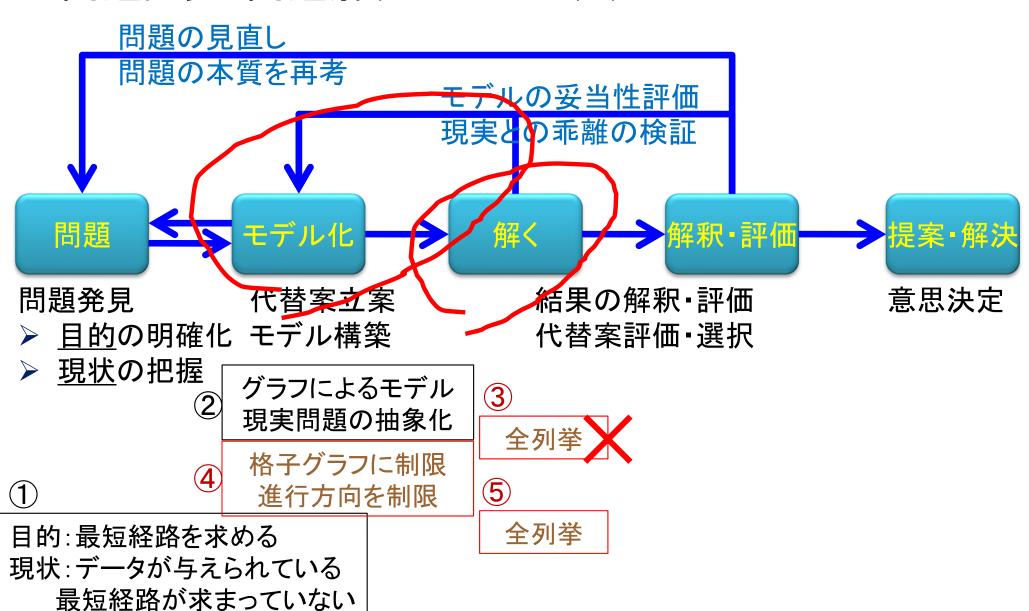
# 経路は全部で幾つ?

| 2 3 | 1 4 | 2 5 | $\begin{bmatrix} 1 \\ 6 \end{bmatrix}$ | 7   | 4 2               |
|-----|-----|-----|----------------------------------------|-----|-------------------|
| 1   | 7 9 | 7   | 5 3                                    | 2 9 | 6 1 8             |
| 5   | 3 4 | 2 5 | 6                                      | 3   | 2 6               |
| 1   | 2 8 | 1   | 5                                      | 7   | 7       1       5 |
| 10  | 1   | 7   | 2                                      | 3   | 4                 |

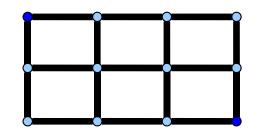
R=6, D=4なので、
$$_{6+4}$$
C<sub>4</sub>= $\frac{_{10\cdot 9\cdot 8\cdot 7}}{_{4\cdot 3\cdot 2\cdot 1}}=210$  通り

# 問題解決とは?

> 問題発見・問題解決から意思決定まで



| R(横) [ | )(縦) | 全経路                   |
|--------|------|-----------------------|
| 3      | 2    | 10                    |
| 6      | 4    | 210                   |
| 10     | 5    | 3,003                 |
| 20     | 10   | 30,045,015            |
| 50     | 50   | $1.0 \times 10^{29}$  |
| 100    | 100  | $9.1 \times 10^{58}$  |
| 500    | 500  | $2.7 \times 10^{299}$ |
| 1000   | 1000 | #NUM!                 |





【格子道路の街】 cf.京都市,札幌市 R, D幾つぐらい?

経路がとてもたくさんあるとは言っても、今のコンピュータはかなりの速さで計算できるんでしょ? だから大丈夫だよね!

- 代表的なCPU, Game機, super computer の浮動小数点演算回数
  - Intel Core i9(5.2GHz): 665 GFLOPS
  - <u>PS3</u>: **218 GFLOPS**
  - <u>PS4</u>: **1.84 TFLOPS**
  - <u>PS5</u>: **10.28 TFLOPS**
  - 京: 10.51 PFLOPS
  - 富岳: 442.01 PFLOPS

- ...1秒間に6650億回
- ...1秒間に2180億回
- ...1秒間に1兆8400億回
- ...1秒間に10兆2800億回
- ...1秒間に1京510兆回
- ...1秒間に44京2010兆回
- **EXECUTE:** \*\*Example 1. \*\*Example 2. \*\*FLOPS = \*\*FLoating-point \*\*Operations \*\*Per Second\*\*
- (※京: Top500.org 世界最速[2回] 2011年6,11月)
- (※富岳: Top500.org 世界最速[4回] 2020年6月~2021年11月])

1つの経路を見つけ、その総コストを計算するのに、たどる経路枝数の浮動小数点演算でできると仮定する. 例えば、R=10、D=5の経路なら、10+5回の演算で計算可とするということ

 $K(+D) \simeq \times 10^3 = + H$   $M(JJ) \simeq \times 10^6 =$ 百万倍  $G(+JJ) \simeq \times 10^9 = 10$ 億倍  $T(-J) \simeq \times 10^{12} = 1$  兆倍  $P(-J) \simeq \times 10^{15} = + 1$  兆倍  $E(-JJ) \simeq \times 10^{18} = 1$  百京倍

100

 $500 | 2.7 \times 10^{299} |$ 

100

500

| <b>10.28 TFLOPS</b> | 442.01 | <b>PFLOPS</b> |
|---------------------|--------|---------------|
|---------------------|--------|---------------|

|      |      |                      | 10.28 1FLOPS | 442.01 PFLOPS  |
|------|------|----------------------|--------------|----------------|
| R(横) | D(縦) | 全経路                  | PS5          | 富岳             |
| 3    | 2    | 10                   | 0.000000000秒 | 0.000000000秒   |
| 6    | 4    | 210                  | 0.000000000秒 | 0.000000000秒   |
| 10   | 5    | 3,003                | 0.000000004秒 | 0.000000000秒   |
| 20   | 10   | 30,045,015           | 0.000087680秒 | 0.000000002秒   |
| 25   | 25   | $1.3 \times 10^{14}$ | 10.25分       | 0.014299519秒   |
| 30   | 30   | $1.2 \times 10^{17}$ | 7.99 日       | 16.053652392 秒 |
| 40   | 40   | $1.1 \times 10^{23}$ |              |                |
| 50   | 50   | $1.0 \times 10^{29}$ |              |                |

**10.28 TFLOPS 442.01 PFLOPS** 

| R(横) | D(縦) | 全経路                   | PS5                       | 富岳                        |
|------|------|-----------------------|---------------------------|---------------------------|
| 3    | 2    | 10                    | 0.0000000000秒             | 0.000000000秒              |
| 6    | 4    | 210                   | 0.000000000秒              | 0.000000000秒              |
| 10   | 5    | 3,003                 | 0.000000004秒              | 0.000000000秒              |
| 20   | 10   | 30,045,015            | 0.000087680秒              | 0.000000002 秒             |
| 25   | 25   | $1.3 \times 10^{14}$  | 10.25分                    | 0.014299519秒              |
| 30   | 30   | $1.2 \times 10^{17}$  | 7.99 日                    | 16.053652392 秒            |
| 40   | 40   | $1.1 \times 10^{23}$  | 26,529.43年                | 225.21 日                  |
| 50   | 50   | $1.0 \times 10^{29}$  | 2.26 宙齡                   | 723,794.38年               |
| 100  | 100  | $9.1 \times 10^{58}$  | 4.05×10 <sup>30</sup> 宙齡  | 9.41×10 <sup>25</sup> 宙齡  |
| 500  | 500  | $2.7 \times 10^{299}$ | 6.04×10 <sup>271</sup> 宙齡 | 1.41×10 <sup>267</sup> 宙齡 |

圧倒的な計算力をもつコンピュータ ですら、全列挙(しらみつぶし)では 答えを求めることが出来ない!

#1宙齡=138億年



# 参考:大きい数を表す接頭辞

万(まん) ×10<sup>4</sup>

• 億(おく) ×10<sup>8</sup>

・ 兆(ちょう) × 10<sup>12</sup>

• 京(けい) ×10<sup>16</sup>

垓(がい) ×10<sup>20</sup>

• 秄(じょ) ×10<sup>24</sup>

・ 穣(じょう) ×10<sup>28</sup>

・ 溝(こう) × 10<sup>32</sup>

澗(かん) ×10<sup>36</sup>

正(せい) ×10<sup>40</sup>

載(さい) ×10<sup>44</sup>

極(ごく) ×10<sup>48</sup>

• 恒河沙(ごうがしゃ) × 10<sup>52</sup>

• 阿僧祇(あそうぎ) ×10<sup>56</sup>

那由他(なゆた) ×10<sup>60</sup>

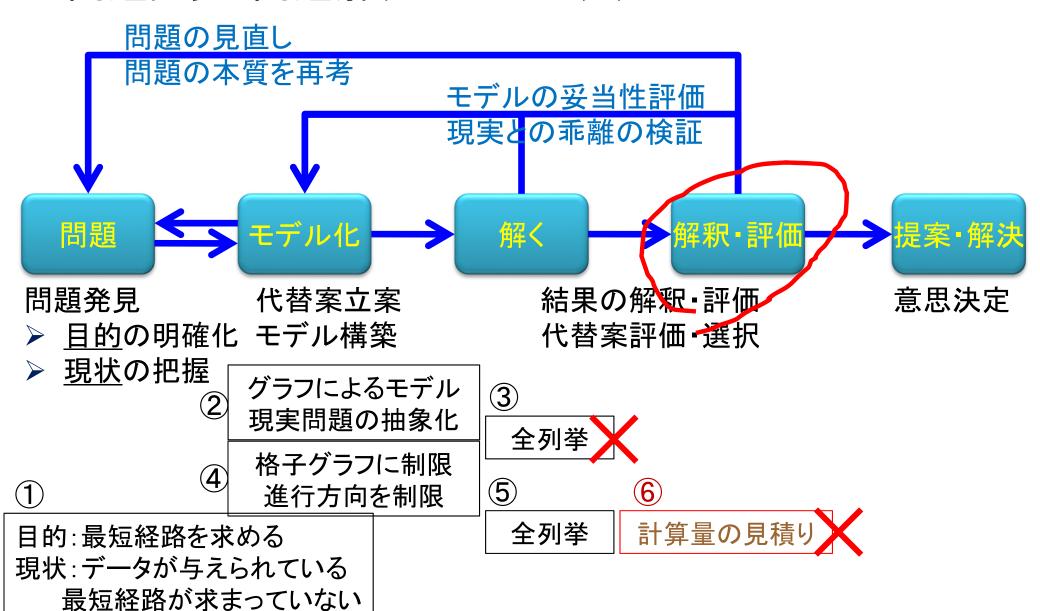
・ 不可思議(ふかしぎ) ×10<sup>64</sup>

• 無量大数(むりょうたいすう) × 1068

【注】「無量大数」は「無限大∞」とは違う

# 問題解決とは?

> 問題発見・問題解決から意思決定まで



# ではどうする?

・ 素朴で素直な方法 [列挙法]

時間が掛かり過ぎ

全経路をしらみつぶしに調べて、 最も短い経路を見つける方法

全経路をしらみつぶしに調べずに、 最も短い経路を、現実的時間で 見つける方法があるか?

> Dijkstra法 (ダイクストラ法)

人間の創造的な仕事!

# Dijkstra法

#### (初期設定)

**step0:** 各点 v に<u>距離ラベル d(v)</u> と<u>親ラベル p(v)</u> を設定する

- ✓ 始点  $\theta$  について d(0)=0, p(0)=-1
- ✓ その他の点 v について  $d(v)=\infty$ , p(v)=-1

未確定点集合 N={0,1,2,...,11}とする

#### (更新法)

step1-1: 未確定点 $v \in N$  について  $\underline{d(v)}$ が最小の点 を見つける

**step1-2:** その点vから出る全枝  $e \in E$  について「<u>距離ラベルd(v)</u> + 枝コストc(e)」を計算し,枝先点 u の<u>距離ラベル d(u) と比較</u>し,もし d(v)+c(e) < d(u) なら,枝先点 u の<u>距離ラベルd(u) と 親ラベル p(v) の値を</u>以下のように<u>更新</u>する

- $\checkmark$  d(u) := d(v) + c(e) 即ち、d(u)の値をd(v) + c(e)の値にする
- $\checkmark$  p(u) := v 即ち, p(u)の値をvにする

step1-3: その点vから出る全枝 $e \in E$ の作業が<u>全て終了</u>したら、その点 $v \in N$  を未確定点集合N から除去する

#### (終了判定)

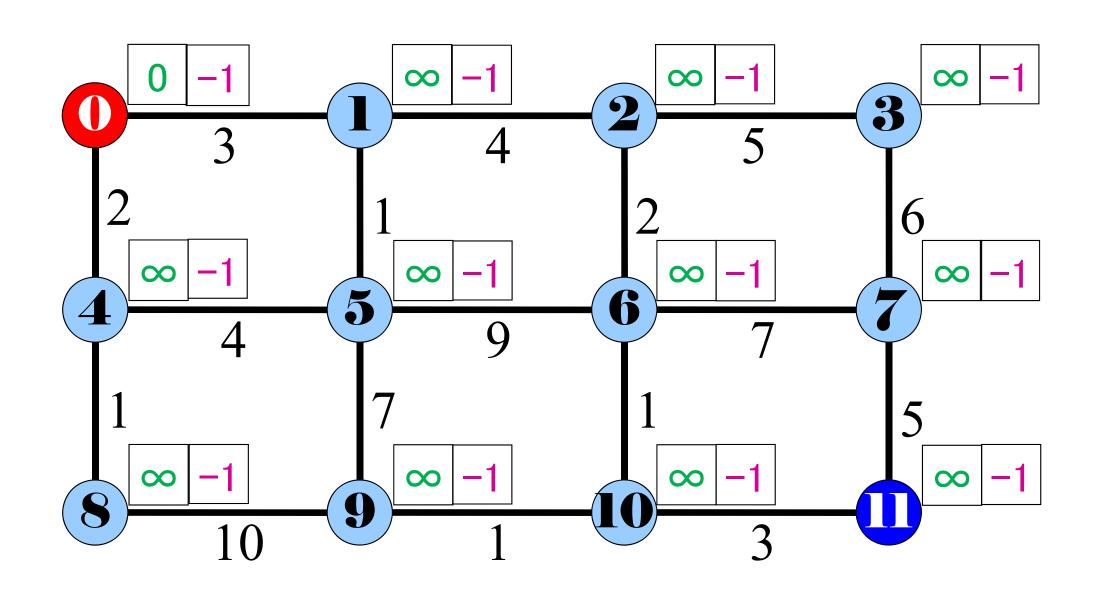
 $step2:未確定点集合Nが空(くう)(N=\emptyset)になったら終了. そうでなければ <math>step1-1$  へ戻る

### Dijkstra法 (初期設定)

**step0:** 各点 v に<u>距離ラベル d(v)</u> と<u>親ラベル p(v)</u> を設定する

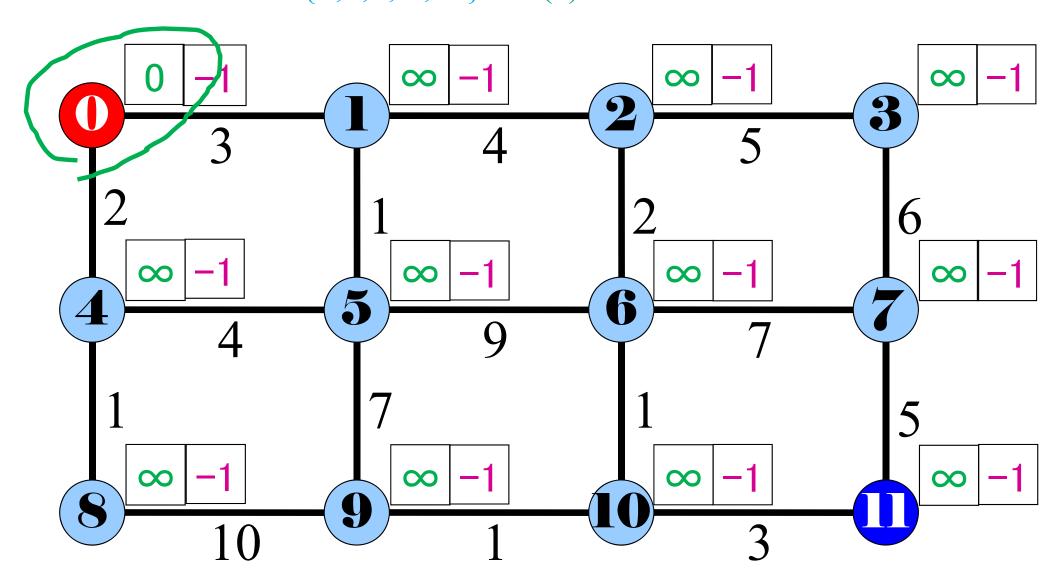
- ✓ 始点 s について d(0)=0, p(0)=-1
- ✓ その他の点 v について  $d(v)=\infty$ , p(v)=-1

未確定点集合 N={0,1,2,...,11}とする



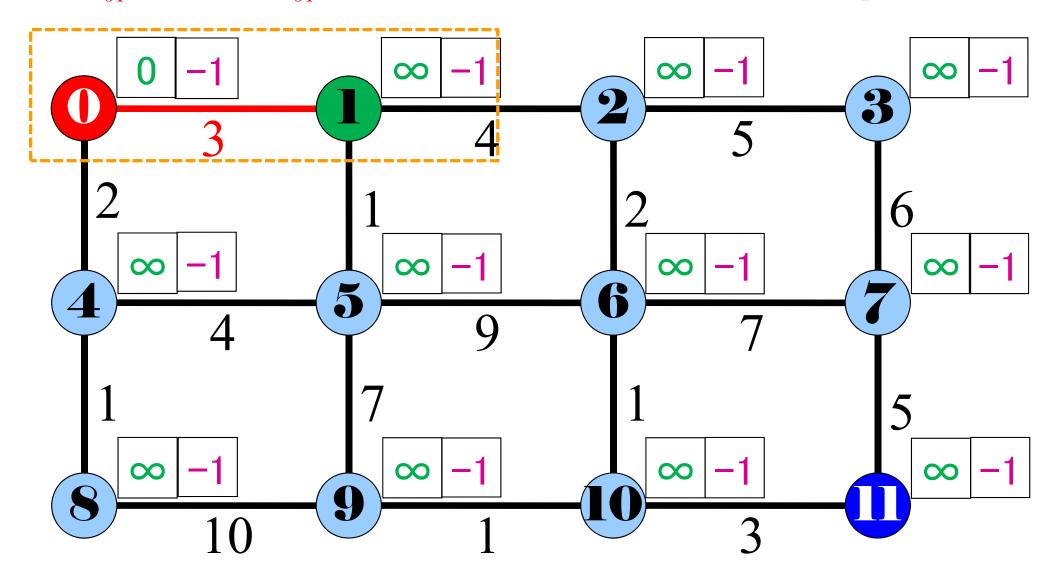
step1-1: 未確定点 $v \in N$  について  $\underline{d(v)}$ が最小の点 を見つける

未確定点集合  $N=\{0,1,2,...,11\}$ で d(v) が最小の点 0 を見つけた



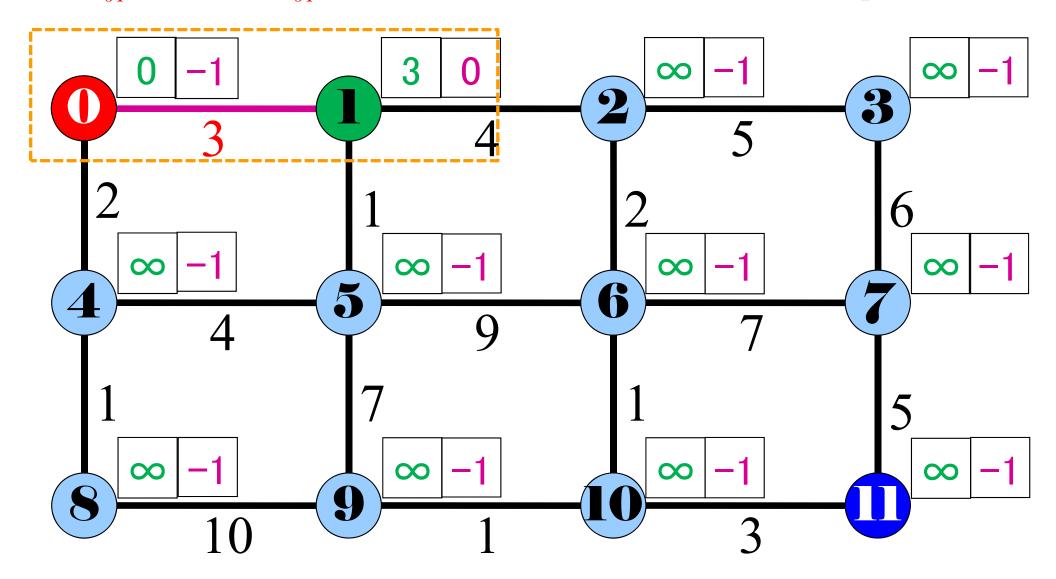
**step1-2:** その点vから出る全枝  $e \in E$  について「<u>距離ラベルd(v)</u> + 枝コストc(e)」を計算し、枝先点u の距離ラベルd(u) と比較し、もし d(v)+c(e) < d(u) なら、d(u) := d(v)+c(e),p(u) := v とする

枝 $e_{01}$ は  $d(0)+c(e_{01})=0+3=3<\infty=d(1)$  より、 $d(1):=3,\ p(1):=0$  に



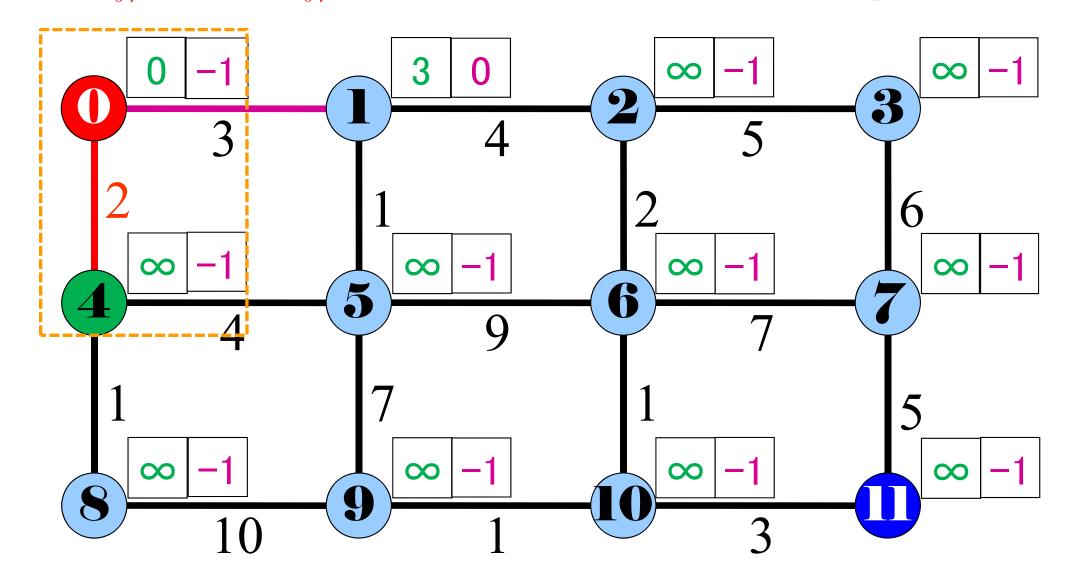
**step1-2:** その点vから出る全枝  $e \in E$  について「<u>距離ラベルd(v)</u> + 枝コストc(e)」を計算し、枝先点u の距離ラベルd(u) と比較し、もしd(v)+c(e) < d(u) なら、d(u) := d(v)+c(e),p(u) := v とする

枝 $e_{01}$ は  $d(0)+c(e_{01})=0+3=3<\infty=d(1)$  より、 $d(1):=3,\ p(1):=0$  に



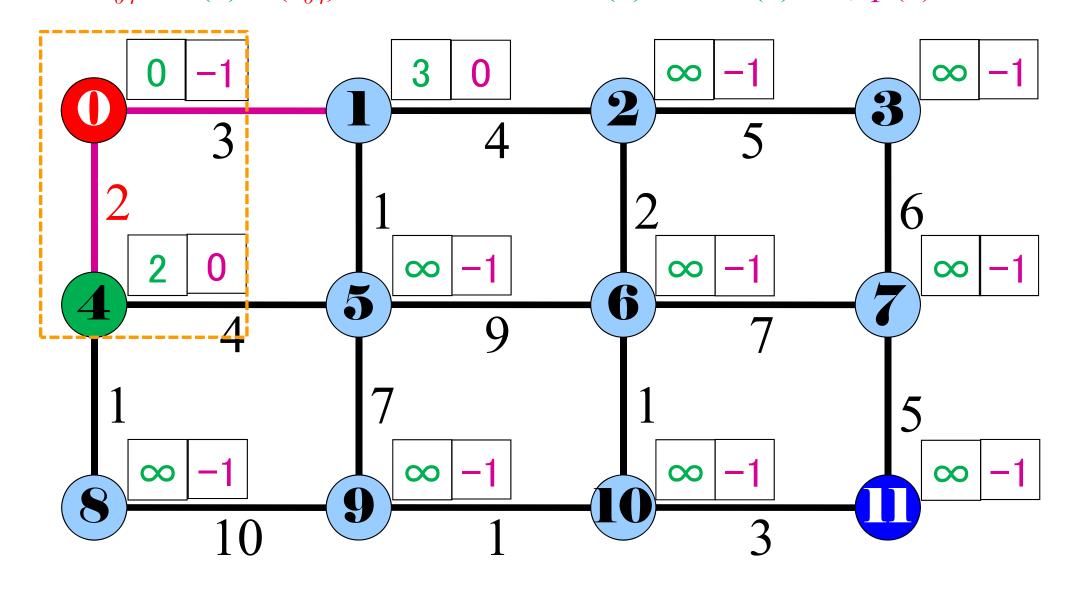
**step1-2:** その点vから出る全枝  $e \in E$  について「<u>距離ラベルd(v)</u> + 枝コストc(e)」を計算し、枝先点u の距離ラベルd(u) と比較し、もしd(v)+c(e) < d(u) なら、d(u) := d(v)+c(e),p(u) := v とする

枝 $e_{04}$ は  $d(0)+c(e_{04})=0+2=2<\infty=d(4)$  より、d(4):=2、p(4):=0 に



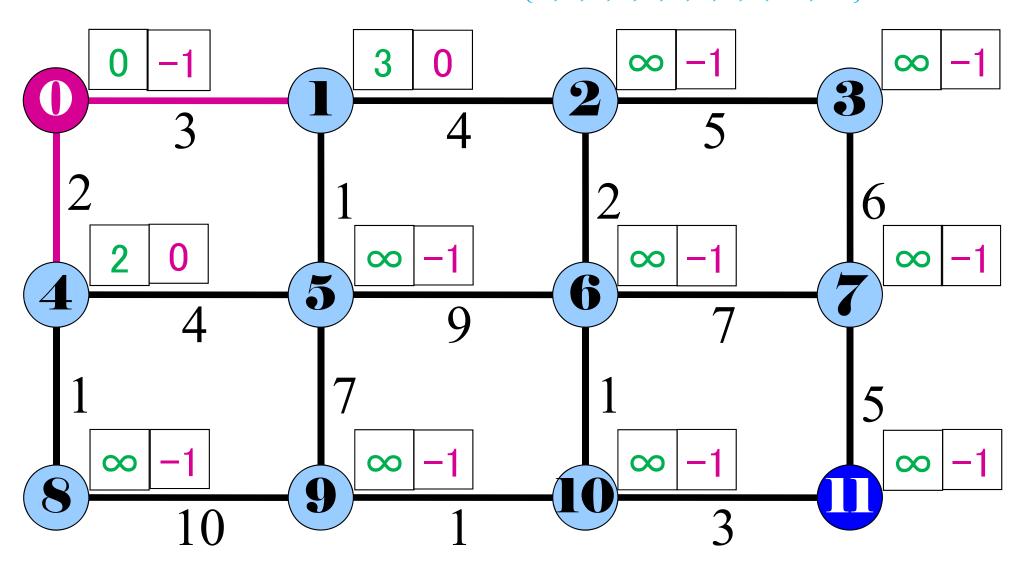
**step1-2:** その点vから出る全枝  $e \in E$  について「<u>距離ラベルd(v)</u> + 枝コストc(e)」を計算し,枝先点u の距離ラベルd(u) と比較し,もしd(v)+c(e) < d(u) なら,d(u) := d(v)+c(e),p(u) := v とする

枝 $e_{04}$ は  $d(0)+c(e_{04})=0+2=2<\infty=d(4)$  より、d(4):=2、p(4):=0 に



step1-3: その点vから出る全枝 $e \in E$ の作業が<u>全て終了</u>したら、 その点 $v \in N$  を未確定点集合N から除去する

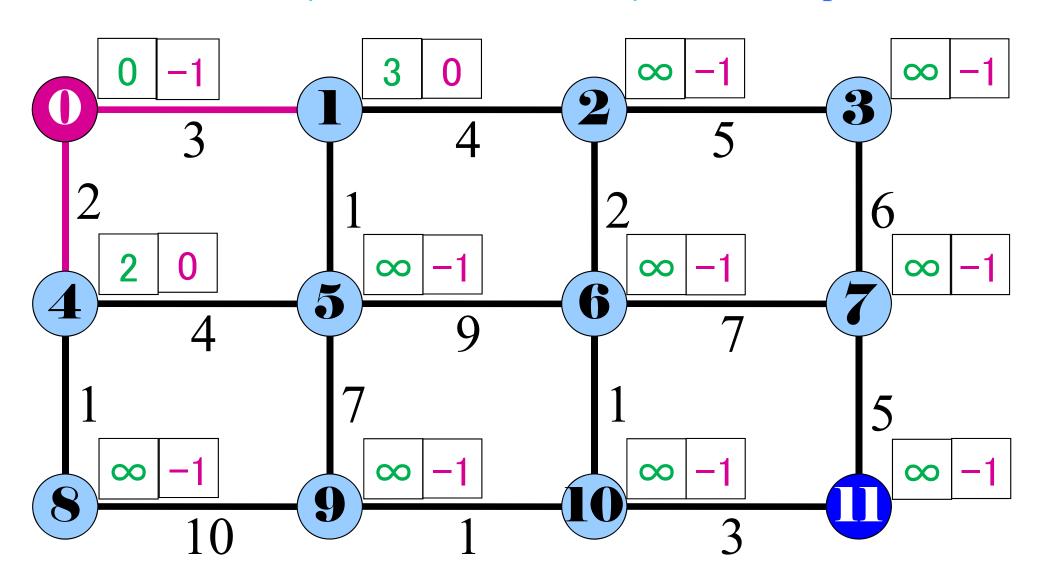
未確定点集合  $N=\{0,1,2,3,4,5,6,7,8,9,10,11\}$  $\rightarrow N=\{1,2,3,4,5,6,7,8,9,10,11\}$ 



# Dijkstra法 (終了判定)

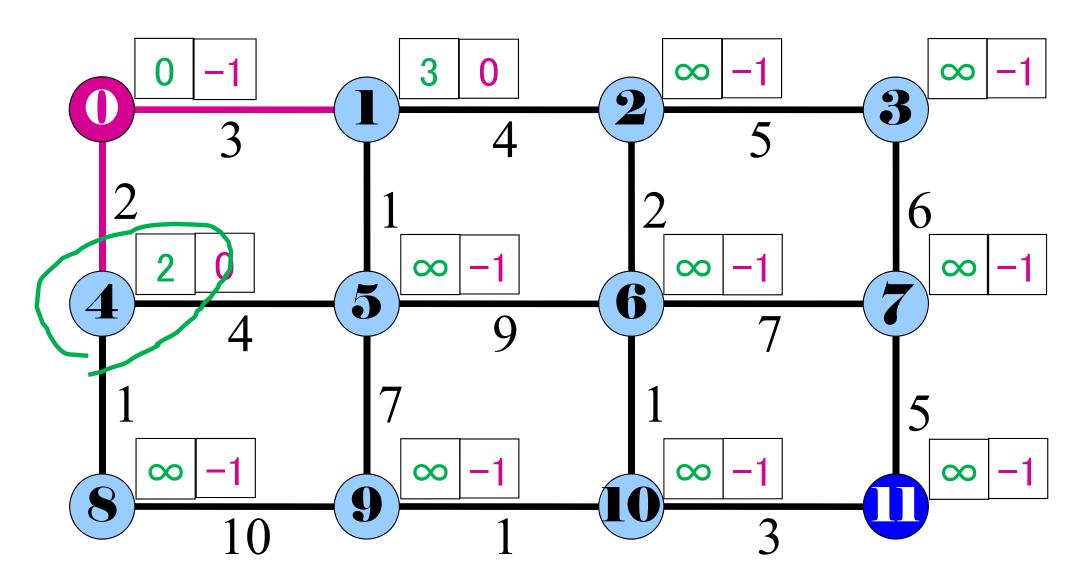
 $step2:未確定点集合Nが空(くう)(N=\emptyset)になったら終了. そうでなければ <math>step1-1$  へ戻る

未確定点集合  $N=\{1,2,3,4,5,6,7,8,9,10,11\} \neq \emptyset$  より step1-1 へ戻る



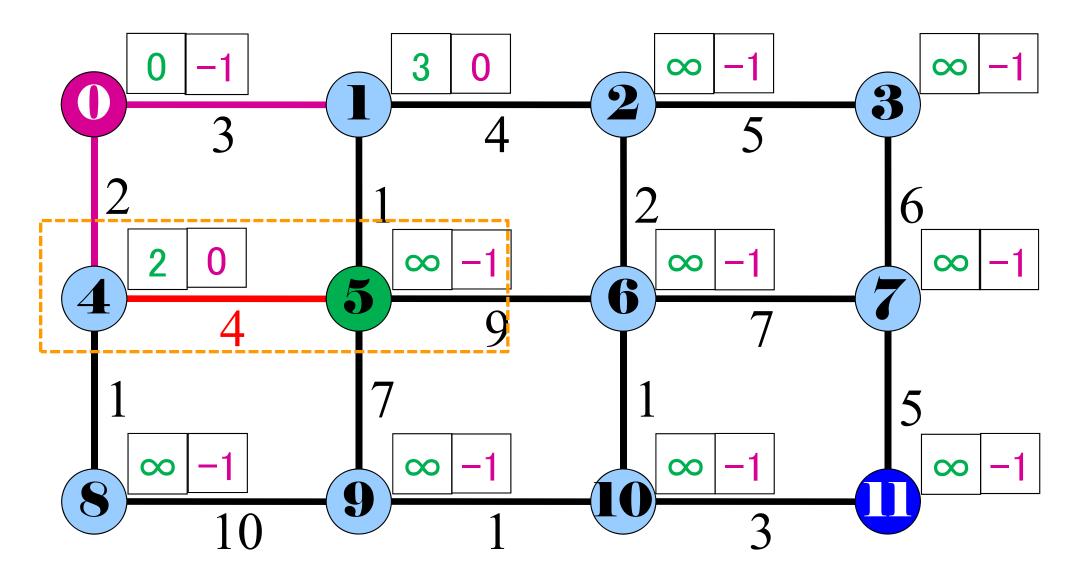
step1-1: 未確定点 $v \in N$  について  $\underline{d(v)}$ が最小の点 を見つける

未確定点集合 *N*={1,2,3,4,5,6,7,8,9,10,11}で *d*(•)最小点4を見つけた



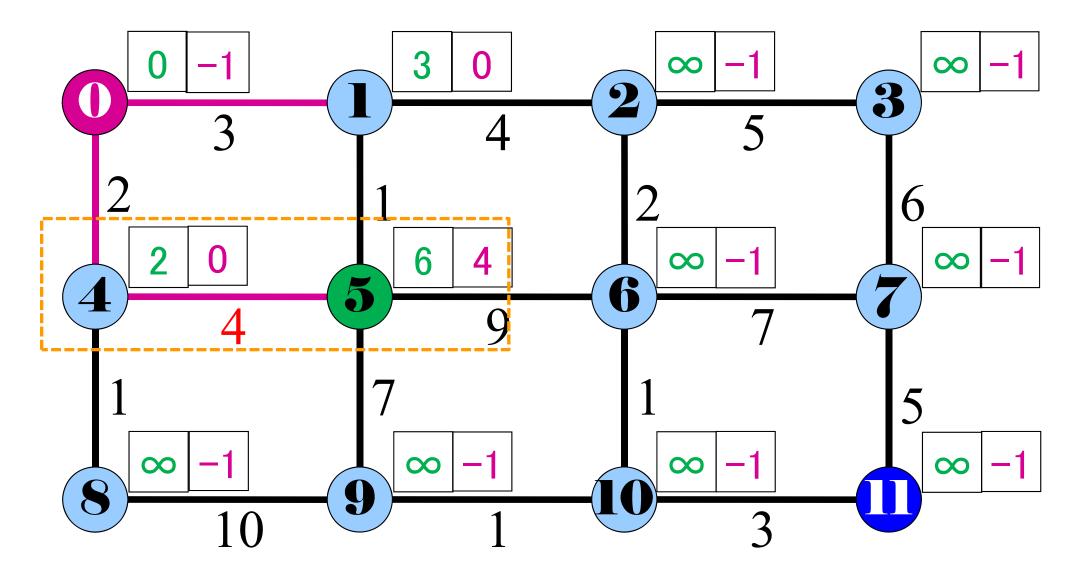
**step1-2:** その点vから出る全枝  $e \in E$  について「<u>距離ラベルd(v)</u> + 枝コストc(e)」を計算し、枝先点u の距離ラベルd(u) と比較し、もしd(v)+c(e) < d(u) なら、d(u) := d(v)+c(e)、p(u) := v とする

枝 $e_{45}$ は  $d(4)+c(e_{45})=2+4=6<\infty=d(5)$  より、d(5):=6、p(5):=4 に



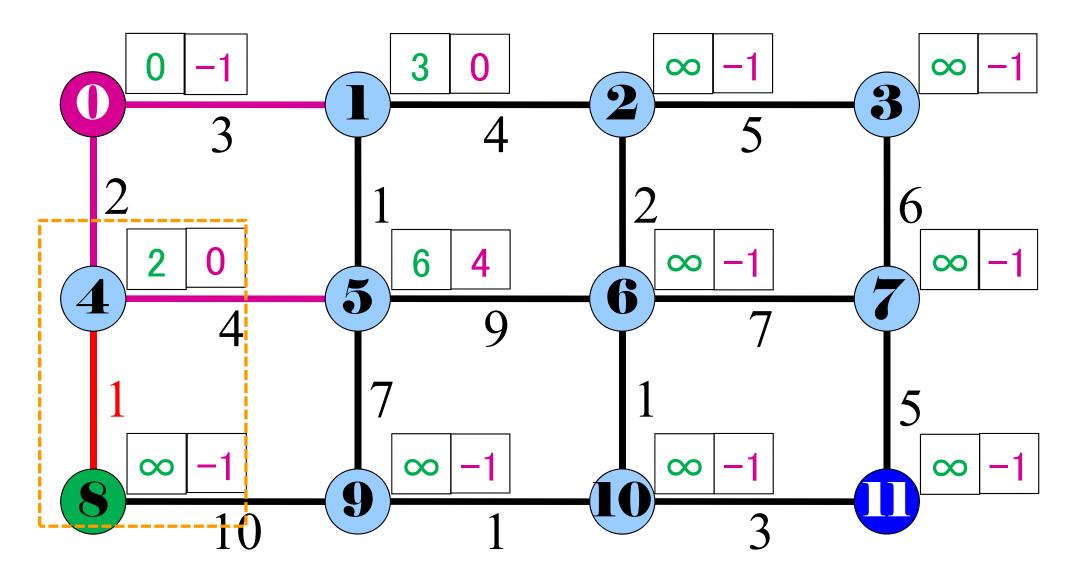
**step1-2:** その点vから出る全枝  $e \in E$  について「<u>距離ラベルd(v)</u> + 枝コストc(e)」を計算し、枝先点u の距離ラベルd(u) と比較し、もしd(v)+c(e) < d(u) なら、d(u) := d(v)+c(e)、p(u) := v とする

枝 $e_{45}$ は  $d(4)+c(e_{45})=2+4=6<\infty=d(5)$  より、d(5):=6、p(5):=4 に



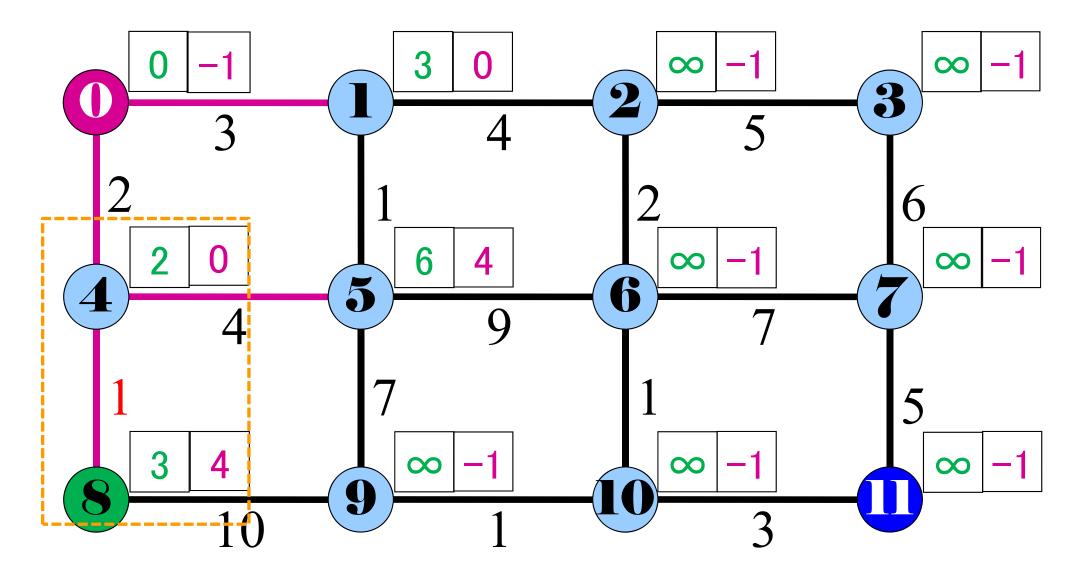
**step1-2:** その点vから出る全枝  $e \in E$  について「<u>距離ラベルd(v)</u> + 枝コストc(e)」を計算し、枝先点u の距離ラベルd(u) と比較し、もしd(v)+c(e) < d(u) なら、d(u) := d(v)+c(e)、p(u) := v とする

枝 $e_{48}$ は  $d(4)+c(e_{48})=2+1=3<\infty=d(8)$  より、d(8):=3、p(8):=4 に



**step1-2:** その点vから出る全枝  $e \in E$  について「<u>距離ラベルd(v)</u> + 枝コストc(e)」を計算し、枝先点u の距離ラベルd(u) と比較し、もしd(v)+c(e) < d(u) なら、d(u) := d(v)+c(e)、p(u) := v とする

枝 $e_{48}$ は  $d(4)+c(e_{48})=2+1=3<\infty=d(8)$  より、d(8):=3、p(8):=4 に



step1-3: その点vから出る全枝 $e \in E$ の作業が<u>全て終了</u>したら、その点 $v \in N$  を未確定点集合N から除去する

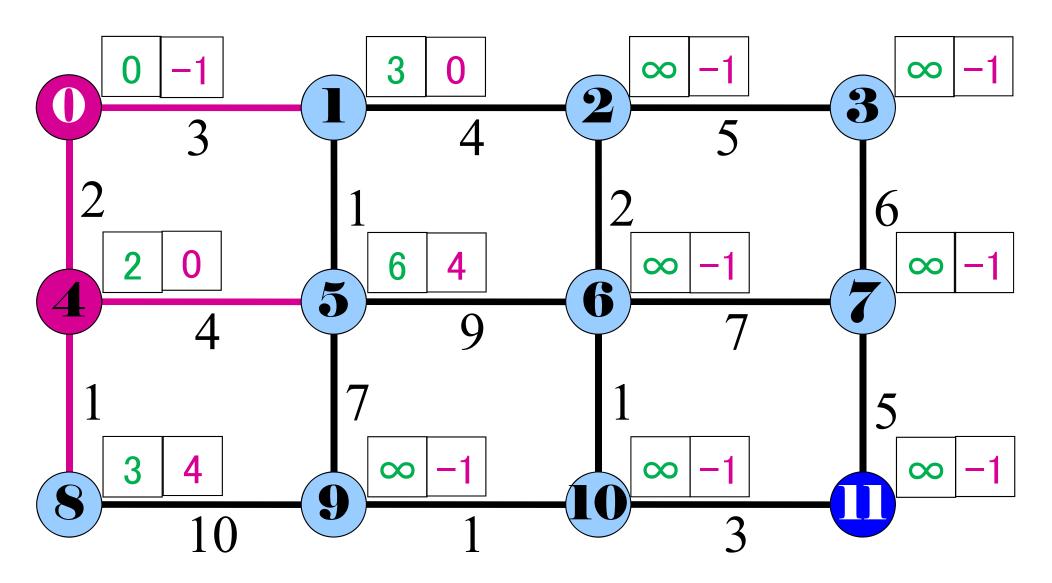
未確定点集合  $N=\{1,2,3,4,5,6,7,8,9,10,11\}$  $\rightarrow N=\{1,2,3,5,6,7,8,9,10,11\}$ 



# Dijkstra法 (終了判定)

 $step2:未確定点集合Nが空(くう)(N=\emptyset)になったら終了. そうでなければ <math>step1-1$  へ戻る

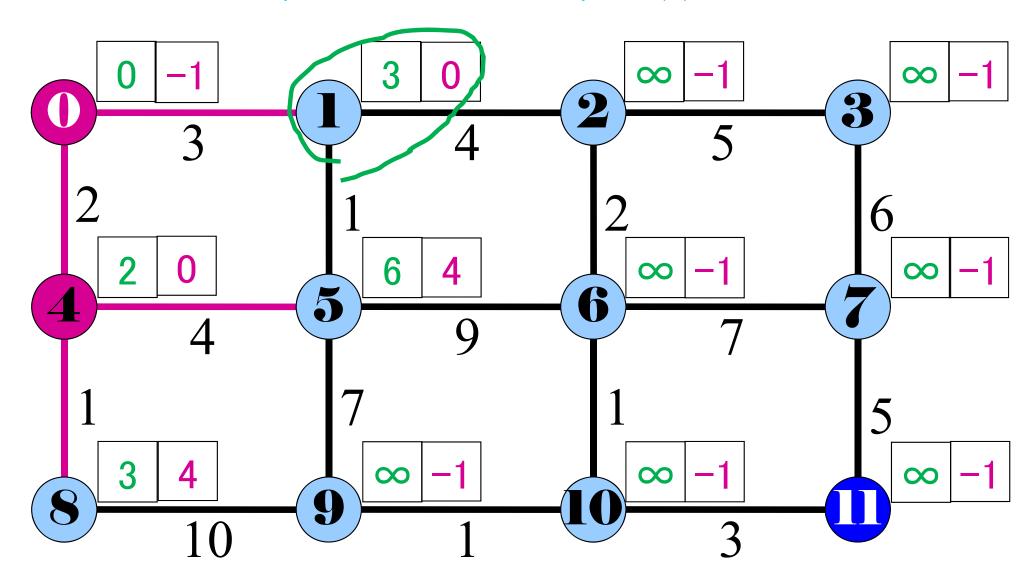
未確定点集合  $N=\{1,2,3,5,6,7,8,9,10,11\} \neq \emptyset$  より step1-1 へ戻る



step1-1: 未確定点 $v \in N$  について  $\underline{d(v)}$ が最小の点 を見つける

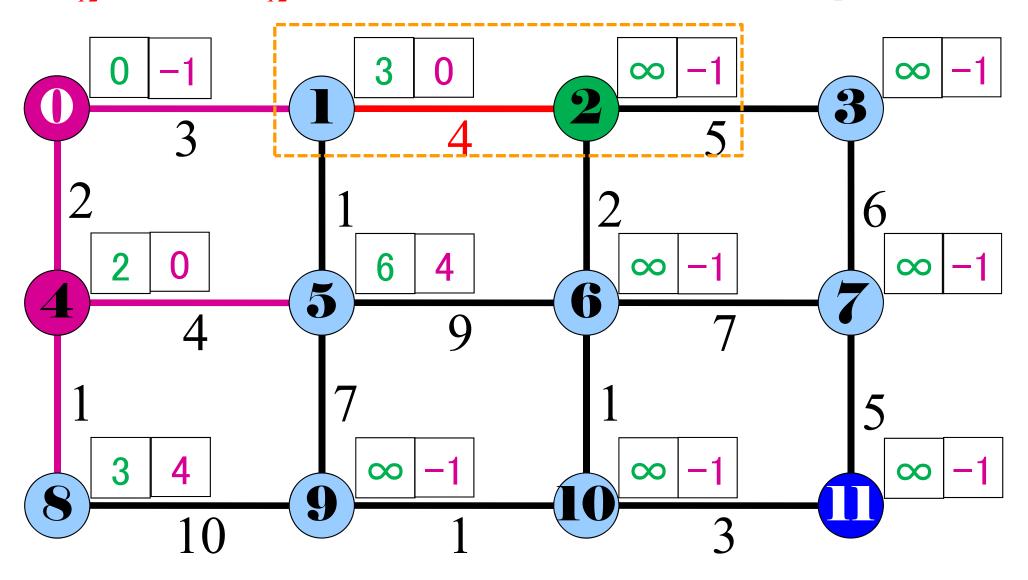
最小点が複数ある場合はどれでも良い

未確定点集合 N={1,2,3,5,6,7,8,9,10,11}で d(・)最小点 1 を見つけた



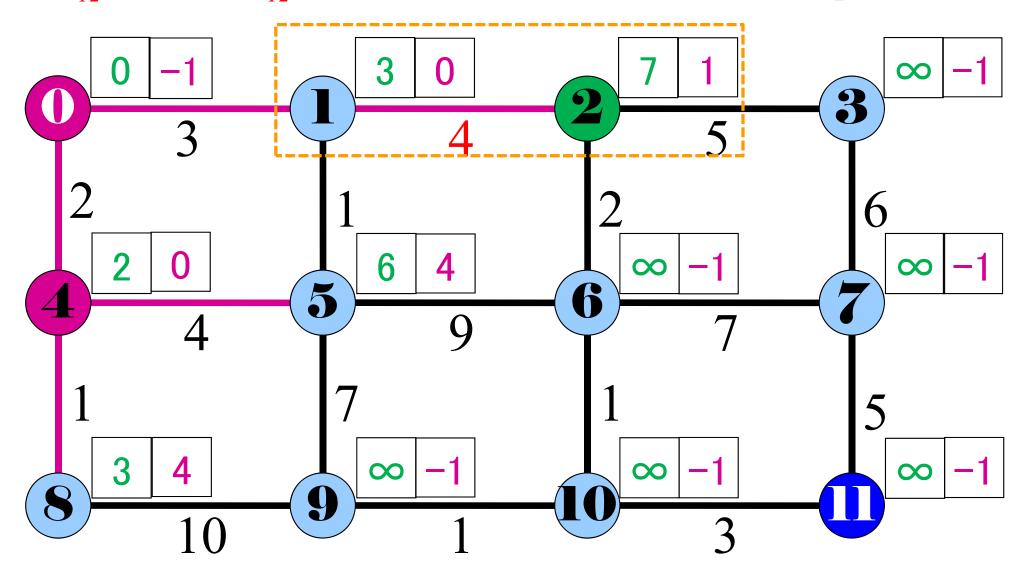
**step1-2:** その点vから出る全枝  $e \in E$  について「<u>距離ラベルd(v)</u> + 枝コストc(e)」を計算し,枝先点u の距離ラベルd(u) と比較し,もしd(v)+c(e) < d(u) なら,d(u) := d(v)+c(e),p(u) := v とする

枝 $e_{12}$ は  $d(1)+c(e_{12})=3+4=7<\infty=d(2)$  より、d(2):=7、p(2):=1 に



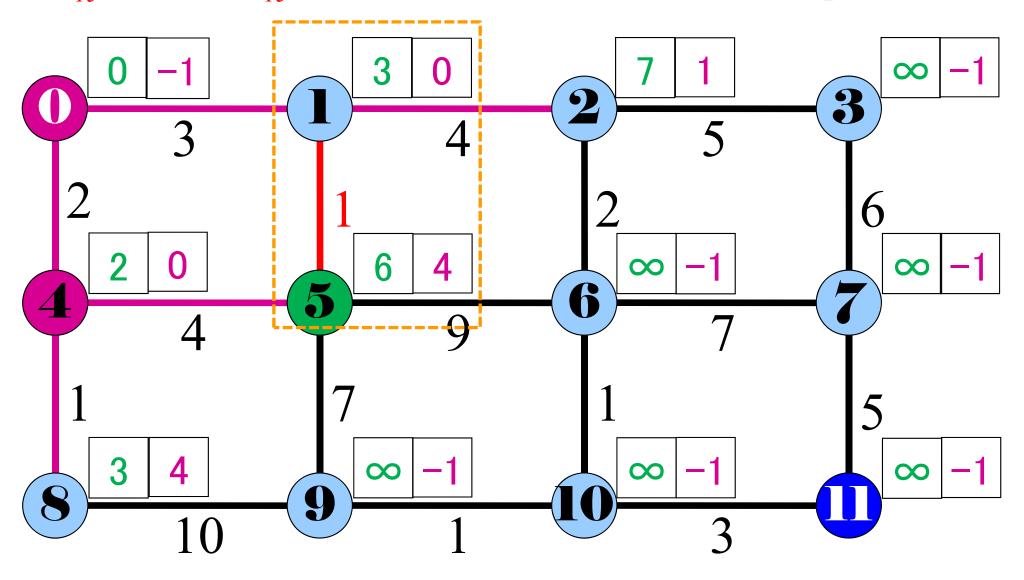
**step1-2:** その点vから出る全枝  $e \in E$  について「<u>距離ラベルd(v)</u> + 枝コストc(e)」を計算し,枝先点u の距離ラベルd(u) と比較し,もしd(v)+c(e) < d(u) なら,d(u) := d(v)+c(e),p(u) := v とする

枝 $e_{12}$ は  $d(1)+c(e_{12})=3+4=7<\infty=d(2)$  より、d(2):=7、p(2):=1 に



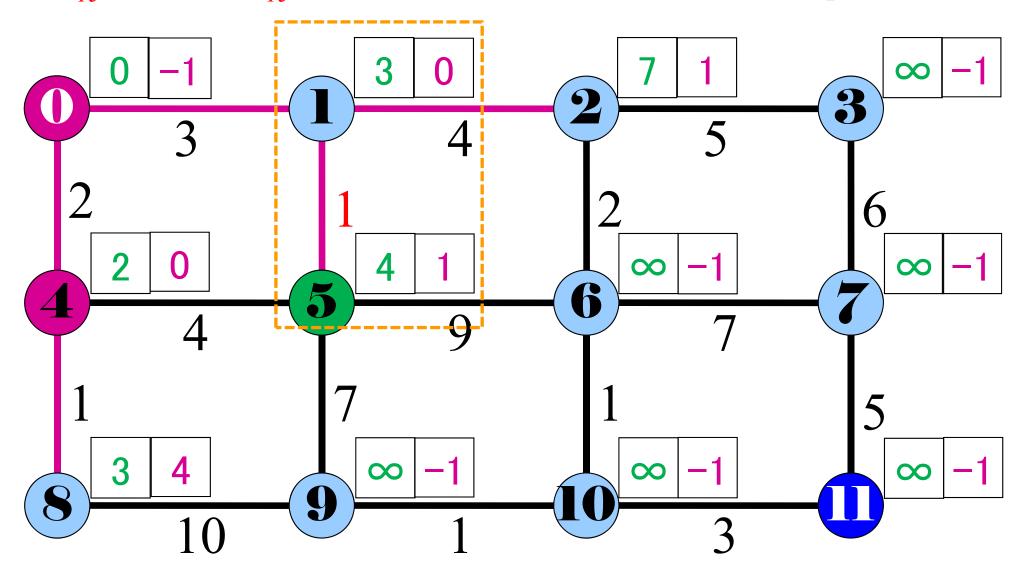
**step1-2:** その点vから出る全枝  $e \in E$  について「<u>距離ラベルd(v)</u> + 枝コストc(e)」を計算し、枝先点u の距離ラベルd(u) と比較し、もしd(v)+c(e) < d(u) なら、d(u) := d(v)+c(e)、p(u) := v とする

枝 $e_{15}$ は  $d(1)+c(e_{15})=3+1=4<6=d(5)$  より、d(5):=4、p(5):=1 に



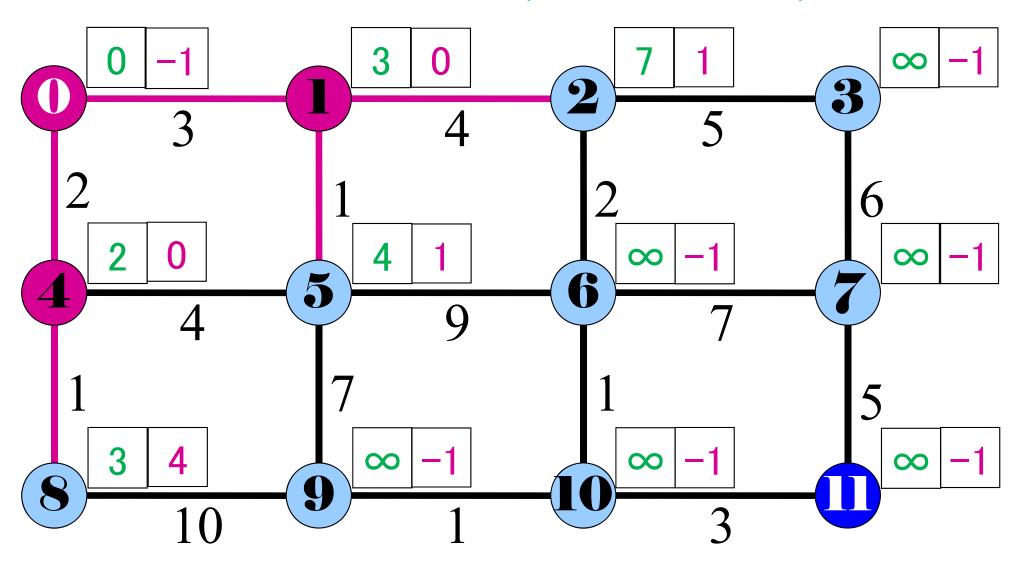
**step1-2:** その点vから出る全枝  $e \in E$  について「<u>距離ラベルd(v)</u> + 枝コストc(e)」を計算し,枝先点u の距離ラベルd(u) と比較し,もしd(v)+c(e) < d(u) なら,d(u) := d(v)+c(e),p(u) := v とする

枝 $e_{15}$ は  $d(1)+c(e_{15})=3+1=4<6=d(5)$  より、d(5):=4、p(5):=1 に



step1-3: その点vから出る全枝 $e \in E$ の作業が<u>全て終了</u>したら、その点 $v \in N$  を未確定点集合N から除去する

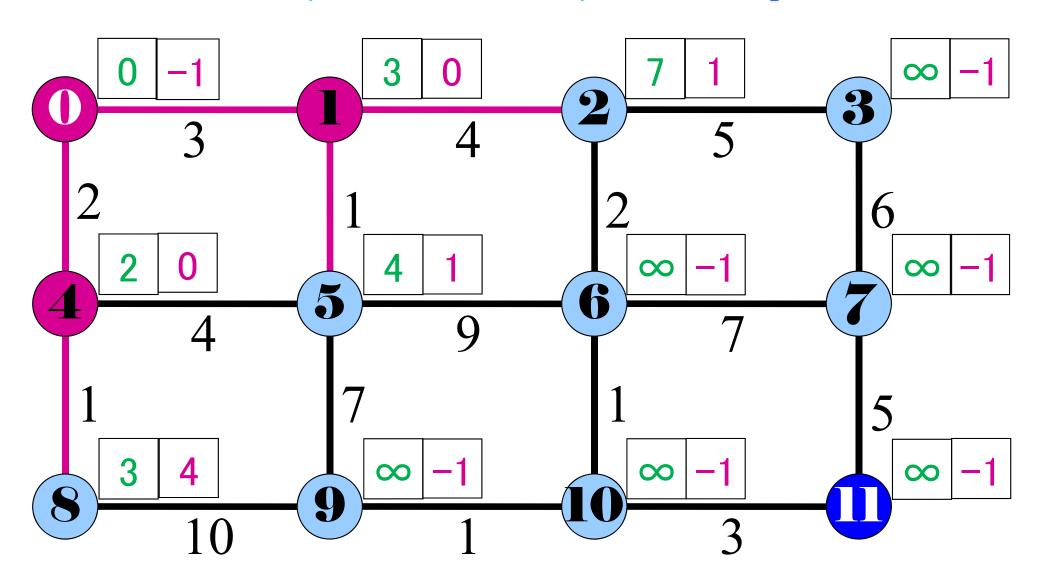
未確定点集合  $N=\{1,2,3,5,6,7,8,9,10,11\}$  $\rightarrow N=\{2,3,5,6,7,8,9,10,11\}$ 



# Dijkstra法 (終了判定)

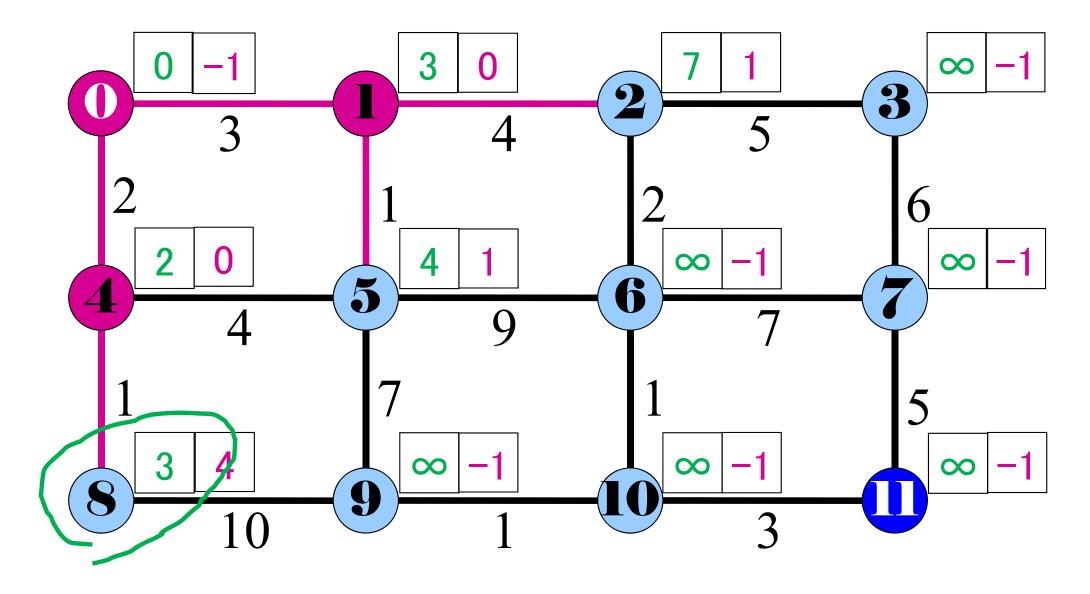
 $step2:未確定点集合Nが空(くう)(N=\emptyset)になったら終了. そうでなければ <math>step1-1$  へ戻る

未確定点集合 *N*={2,3,5,6,7,8,9,10,11} ≠ Ø より step1-1 へ戻る



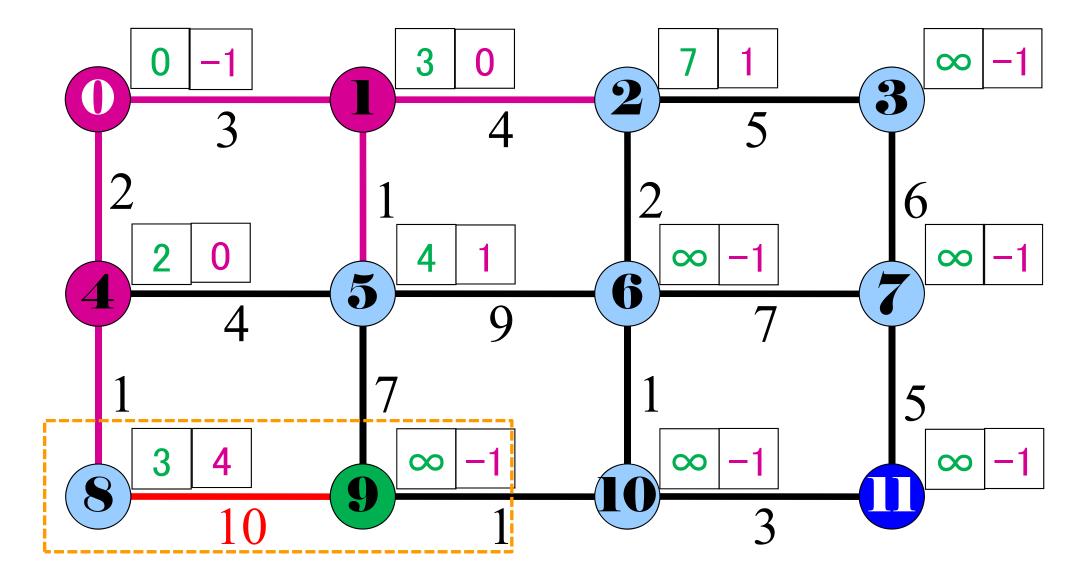
step1-1: 未確定点 $v \in N$  について  $\underline{d(v)}$ が最小の点 を見つける

未確定点集合 N={2,3,5,6,7,8,9,10,11}で d(・)最小点 8 を見つけた



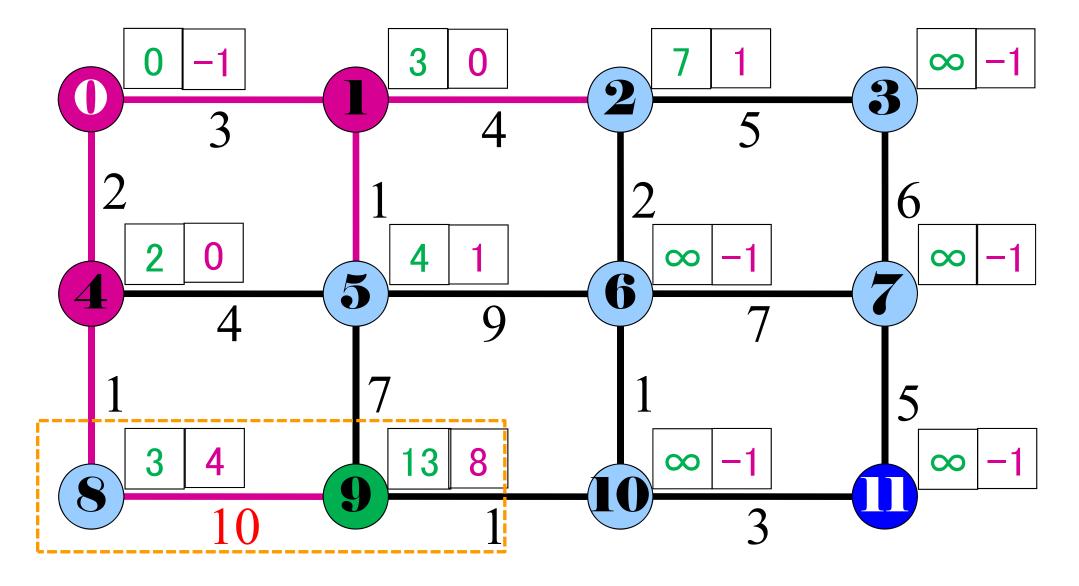
**step1-2:** その点vから出る全枝  $e \in E$  について「<u>距離ラベルd(v)</u> + 枝コストc(e)」を計算し、枝先点u の距離ラベルd(u) と比較し、もしd(v)+c(e) < d(u) なら、d(u) := d(v)+c(e)、p(u) := v とする

枝 $e_{810}$ は  $d(4)+c(e_{810})=3+10=13<\infty=d(9)$  より、d(9):=13,p(9):=8 に



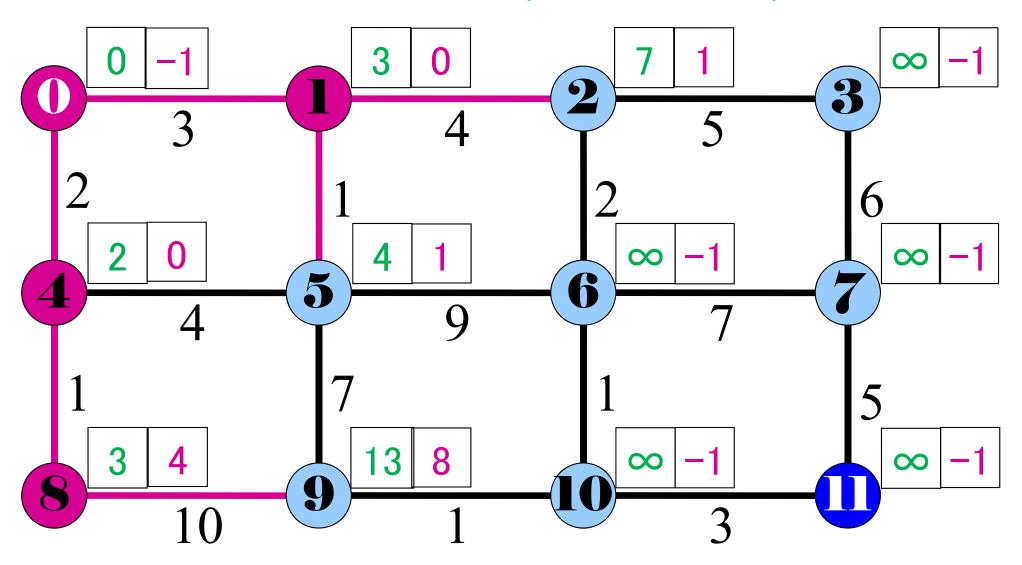
**step1-2:** その点vから出る全枝  $e \in E$  について「<u>距離ラベルd(v)</u> + 枝コストc(e)」を計算し,枝先点u の距離ラベルd(u) と比較し,もしd(v)+c(e) < d(u) なら,d(u) := d(v)+c(e),p(u) := v とする

枝 $e_{810}$ は  $d(4)+c(e_{810})=3+10=13<\infty=d(9)$  より、d(9):=13,p(9):=8 に



step1-3: その点vから出る全枝 $e \in E$ の作業が<u>全て終了</u>したら、その点 $v \in N$  を未確定点集合N から除去する

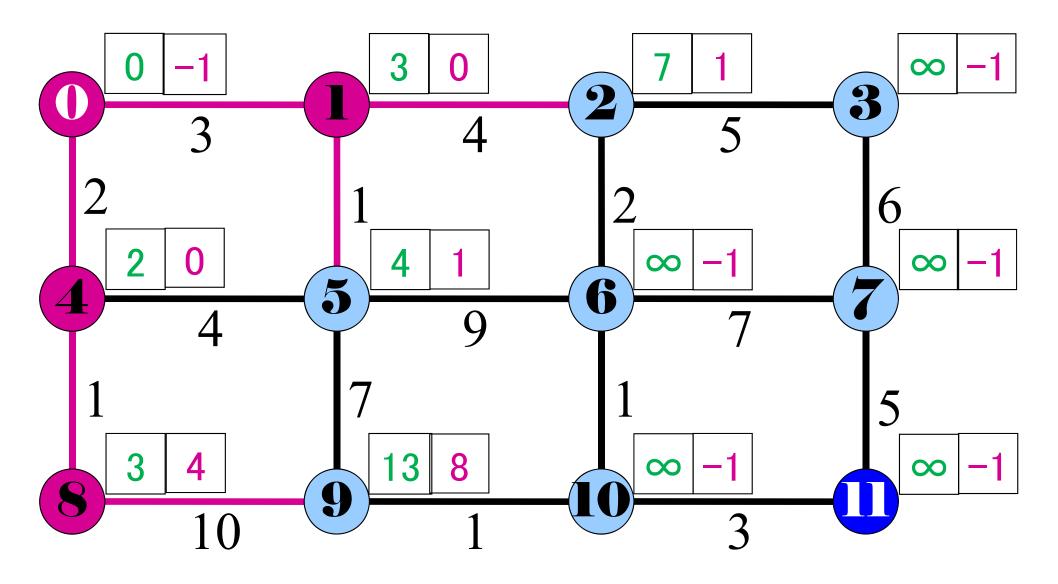
未確定点集合  $N=\{2,3,5,6,7,8,9,10,11\}$  $\rightarrow N=\{2,3,5,6,7,9,10,11\}$ 



# Dijkstra法 (終了判定)

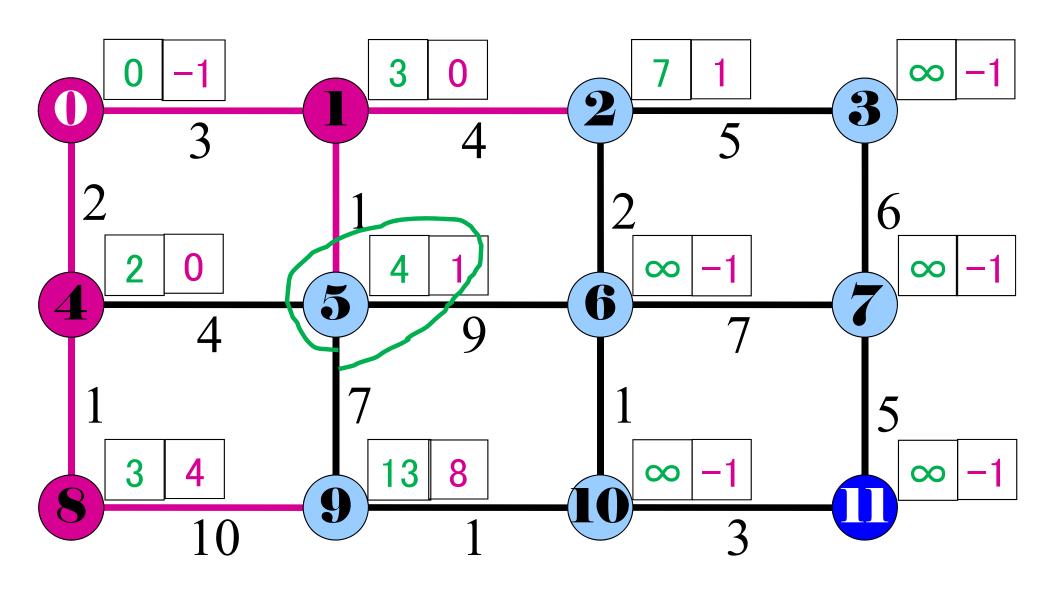
 $step2:未確定点集合Nが空(くう)(N=\emptyset)になったら終了. そうでなければ <math>step1-1$  へ戻る

未確定点集合 *N*={2,3,5,6,7,9,10,11} ≠ Ø より **step1-1** へ戻る



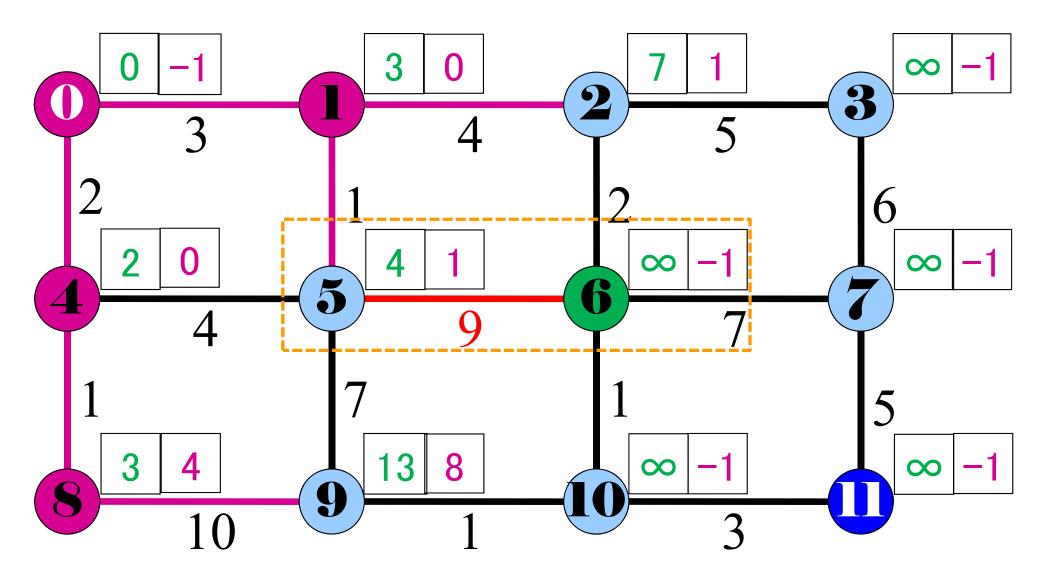
step1-1: 未確定点 $v \in N$  について  $\underline{d(v)}$ が最小の点 を見つける

未確定点集合 N={2,3,5,6,7,9,10,11}で d(•)最小点 5 を見つけた



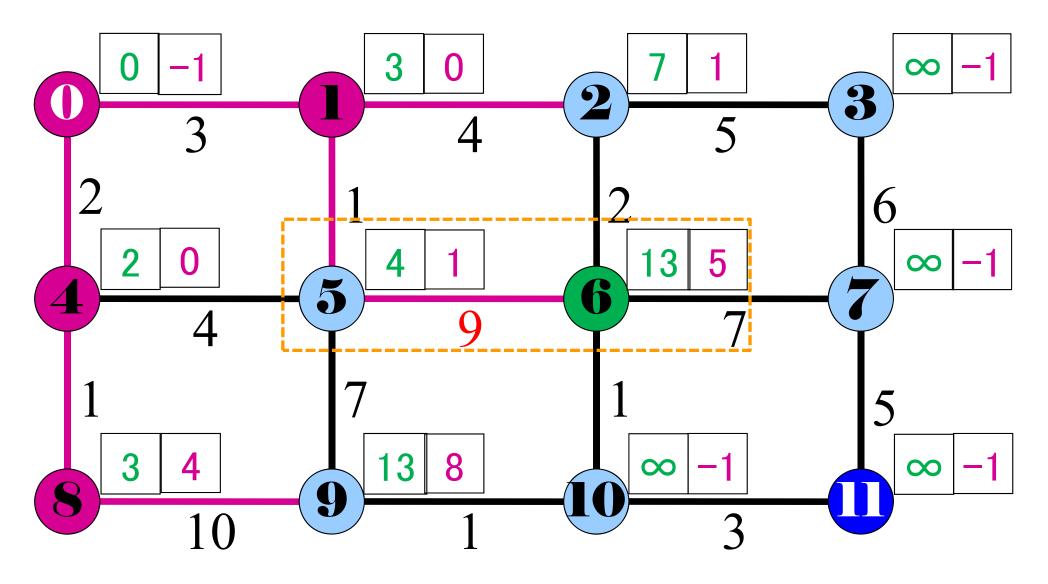
**step1-2:** その点vから出る全枝  $e \in E$  について「<u>距離ラベルd(v)</u> + 枝コストc(e)」を計算し、枝先点u の距離ラベルd(u) と比較し、もしd(v)+c(e) < d(u) なら、d(u) := d(v)+c(e)、p(u) := v とする

枝 $e_{56}$ は  $d(5)+c(e_{56})=4+9=13<\infty=d(6)$  より、d(6):=13、p(6):=5 に



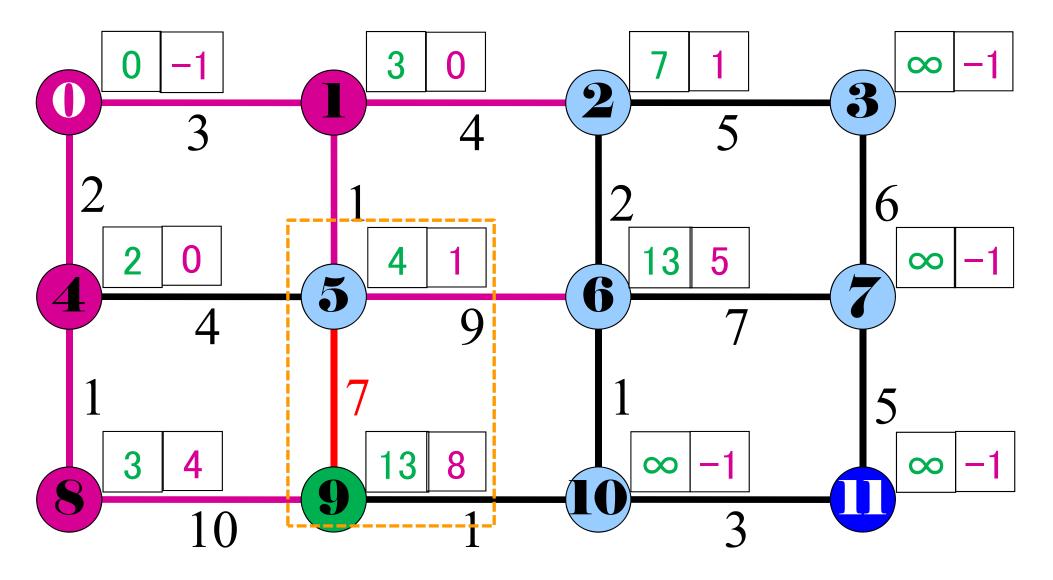
**step1-2:** その点vから出る全枝  $e \in E$  について「<u>距離ラベルd(v)</u> + 枝コストc(e)」を計算し,枝先点u の距離ラベルd(u) と比較し,もしd(v)+c(e) < d(u) なら,d(u) := d(v)+c(e),p(u) := v とする

枝 $e_{56}$ は  $d(5)+c(e_{56})=4+9=13<\infty=d(6)$  より、d(6):=13、p(6):=5 に



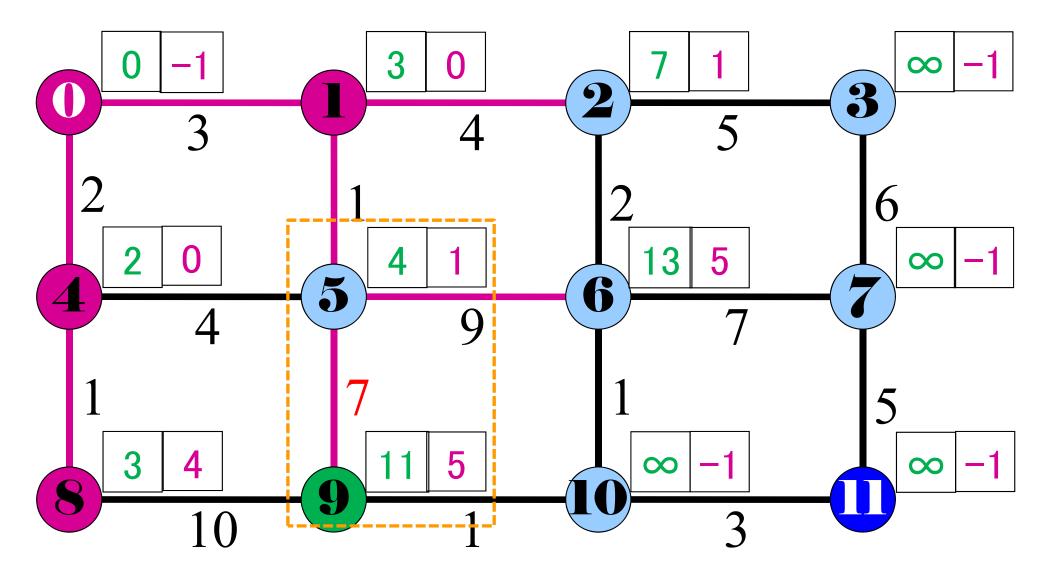
**step1-2:** その点vから出る全枝  $e \in E$  について「<u>距離ラベルd(v)</u> + 枝コストc(e)」を計算し、枝先点u の距離ラベルd(u) と比較し、もしd(v)+c(e) < d(u) なら、d(u) := d(v)+c(e)、p(u) := v とする

枝 $e_{59}$ は $d(5)+c(e_{59})=4+7=11<13=d(9)$ より、d(9):=11,p(9):=5に



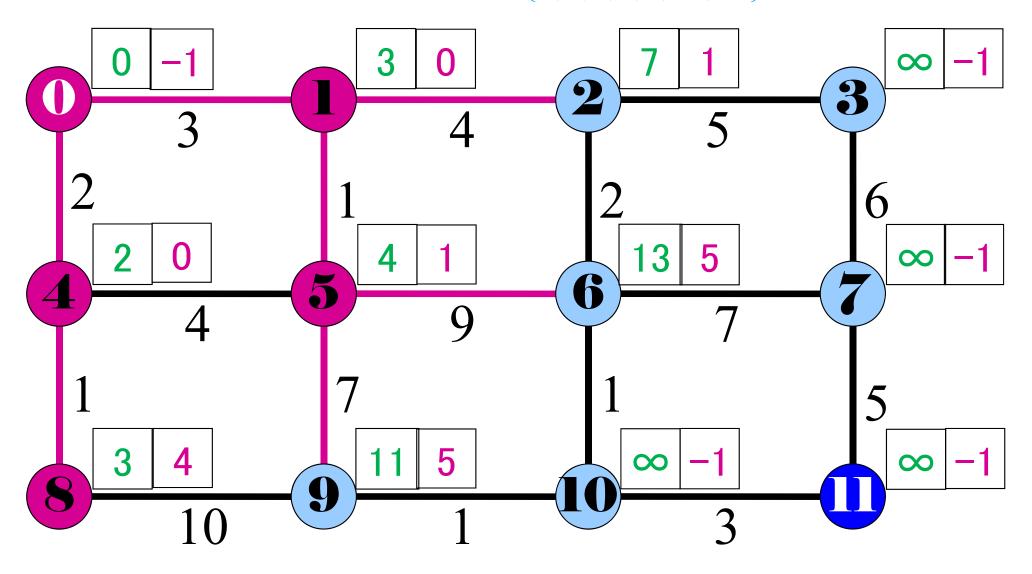
**step1-2:** その点vから出る全枝  $e \in E$  について「<u>距離ラベルd(v)</u> + 枝コストc(e)」を計算し,枝先点u の距離ラベルd(u) と比較し,もしd(v)+c(e) < d(u) なら,d(u) := d(v)+c(e),p(u) := v とする

枝 $e_{59}$ は $d(5)+c(e_{59})=4+7=11<13=d(9)$ より、d(9):=11,p(9):=5に



step1-3: その点vから出る全枝 $e \in E$ の作業が全て終了したら、その点 $v \in N$ を未確定点集合Nから除去する

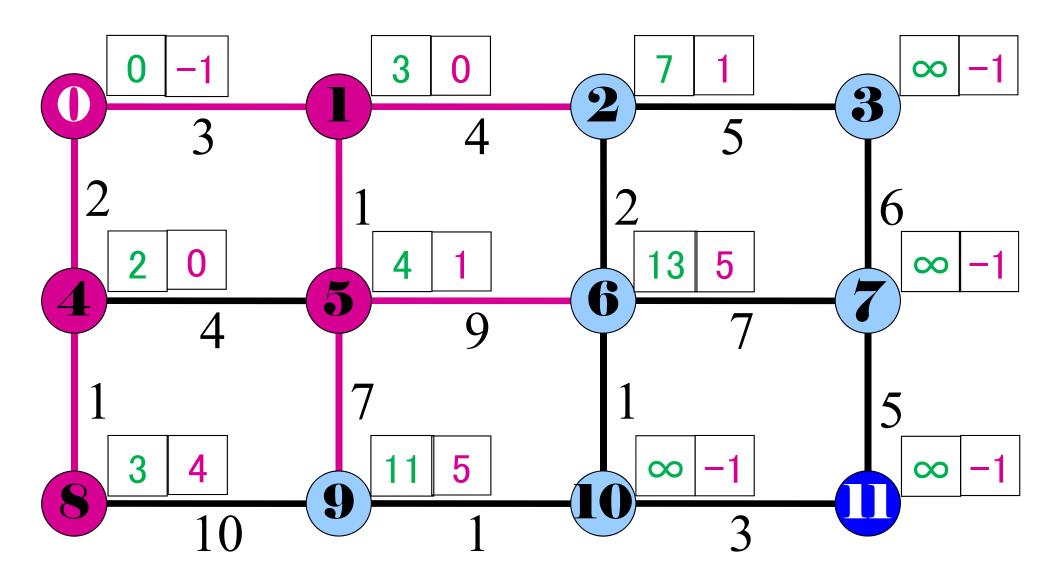
未確定点集合  $N=\{2,3,5,6,7,9,10,11\}$  $\rightarrow N=\{2,3,6,7,9,10,11\}$ 



# Dijkstra法 (終了判定)

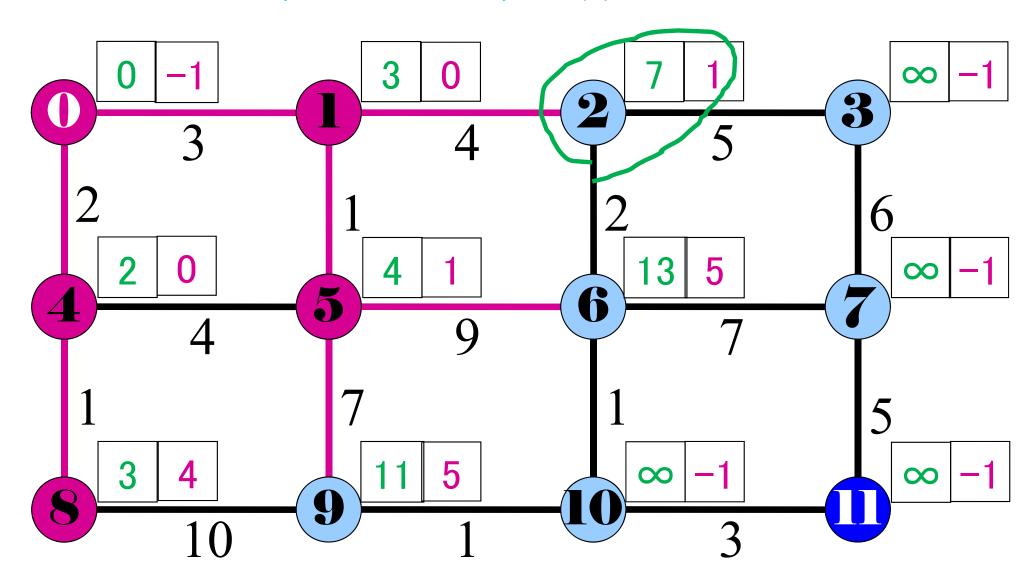
 $step2:未確定点集合Nが空(くう)(N=\emptyset)になったら終了. そうでなければ <math>step1-1$  へ戻る

未確定点集合 *N*={2,3,6,7,9,10,11} ≠ Ø より **step1-1** へ戻る



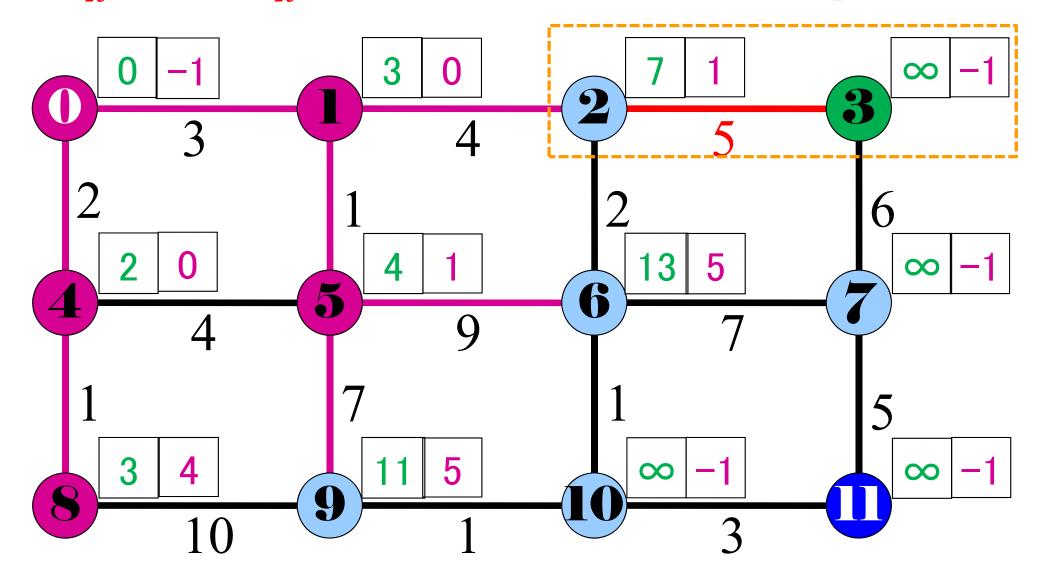
step1-1: 未確定点 $v \in N$  について  $\underline{d(v)}$ が最小の点 を見つける

未確定点集合 *N*={2,3,6,7,9,10,11}で *d*(•)最小点 2 を見つけた



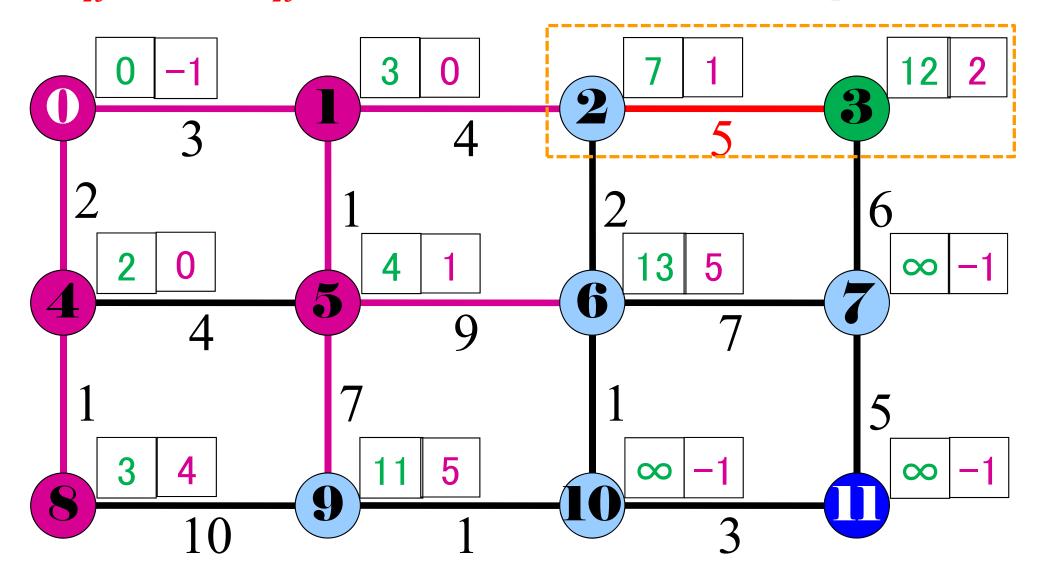
**step1-2:** その点vから出る全枝  $e \in E$  について「<u>距離ラベルd(v)</u> + 枝コストc(e)」を計算し、枝先点u の距離ラベルd(u) と比較し、もしd(v)+c(e) < d(u) なら、d(u) := d(v)+c(e),p(u) := v とする

枝 $e_{23}$ は $d(2)+c(e_{23})=7+5=12<\infty=d(3)$ より、d(3):=12,p(3):=2に



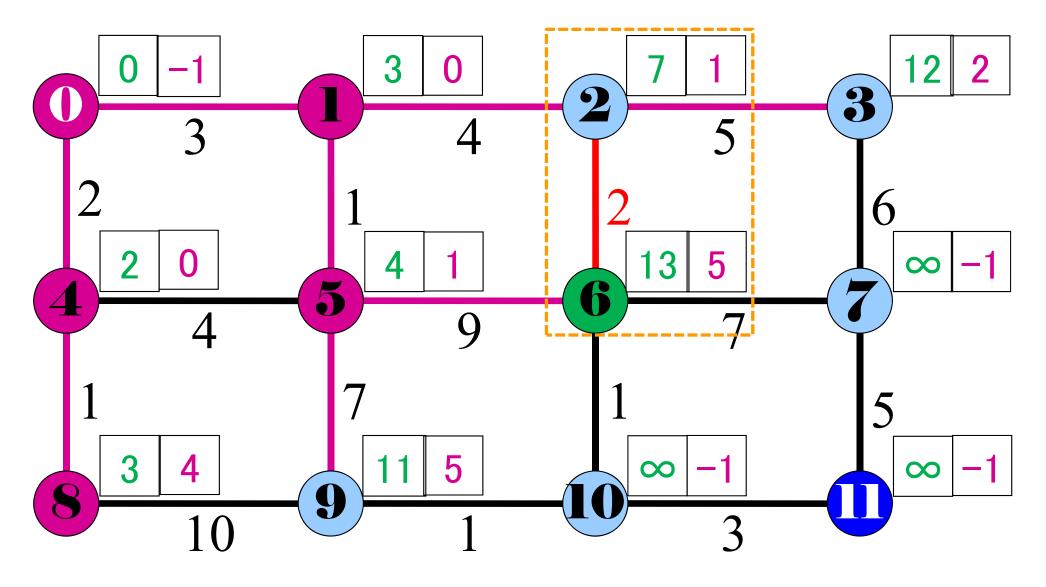
**step1-2:** その点vから出る全枝  $e \in E$  について「<u>距離ラベルd(v)</u> + 枝コストc(e)」を計算し,枝先点u の距離ラベルd(u) と比較し,もしd(v)+c(e) < d(u) なら,d(u) := d(v)+c(e),p(u) := v とする

枝 $e_{23}$ は $d(2)+c(e_{23})=7+5=12<\infty=d(3)$ より、d(3):=12,p(3):=2に



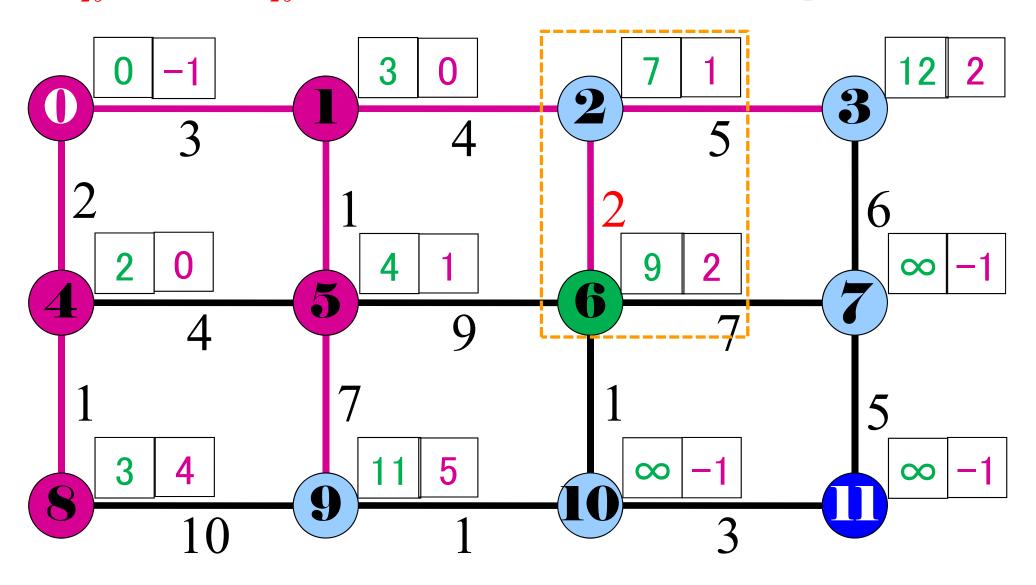
**step1-2:** その点vから出る全枝  $e \in E$  について「<u>距離ラベルd(v)</u> + 枝コストc(e)」を計算し,枝先点u の距離ラベルd(u) と比較し,もしd(v)+c(e) < d(u) なら,d(u) := d(v)+c(e),p(u) := v とする

枝 $e_{26}$ は  $d(2)+c(e_{26})=7+2=9<13=d(6)$  より、d(6):=9,p(6):=2 に



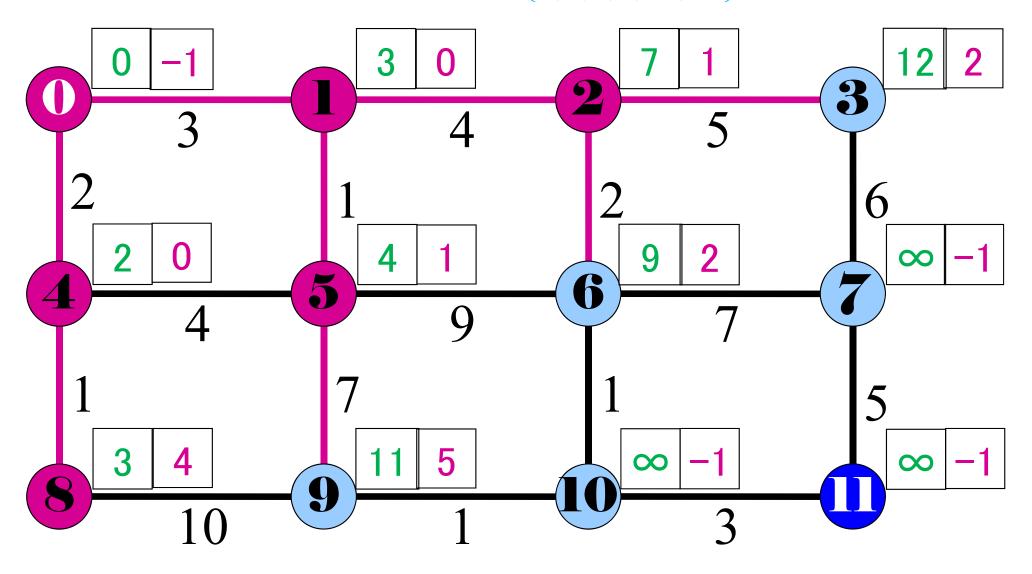
**step1-2:** その点vから出る全枝  $e \in E$  について「<u>距離ラベルd(v)</u> + 枝コストc(e)」を計算し,枝先点u の距離ラベルd(u) と比較し,もしd(v)+c(e) < d(u) なら,d(u) := d(v)+c(e),p(u) := v とする

枝 $e_{26}$ は  $d(2)+c(e_{26})=7+2=9<13=d(6)$  より、d(6):=9,p(6):=2 に



step1-3: その点vから出る全枝 $e \in E$ の作業が全て終了したら、その点 $v \in N$ を未確定点集合Nから除去する

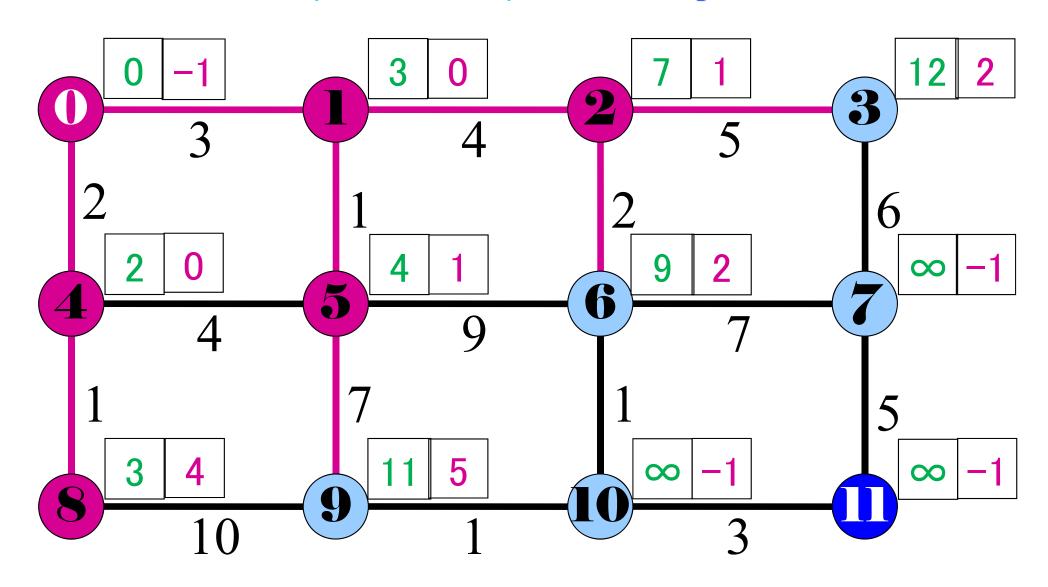
未確定点集合  $N=\{2,3,6,7,9,10,11\}$  $\rightarrow N=\{3,6,7,9,10,11\}$ 



# Dijkstra法 (終了判定)

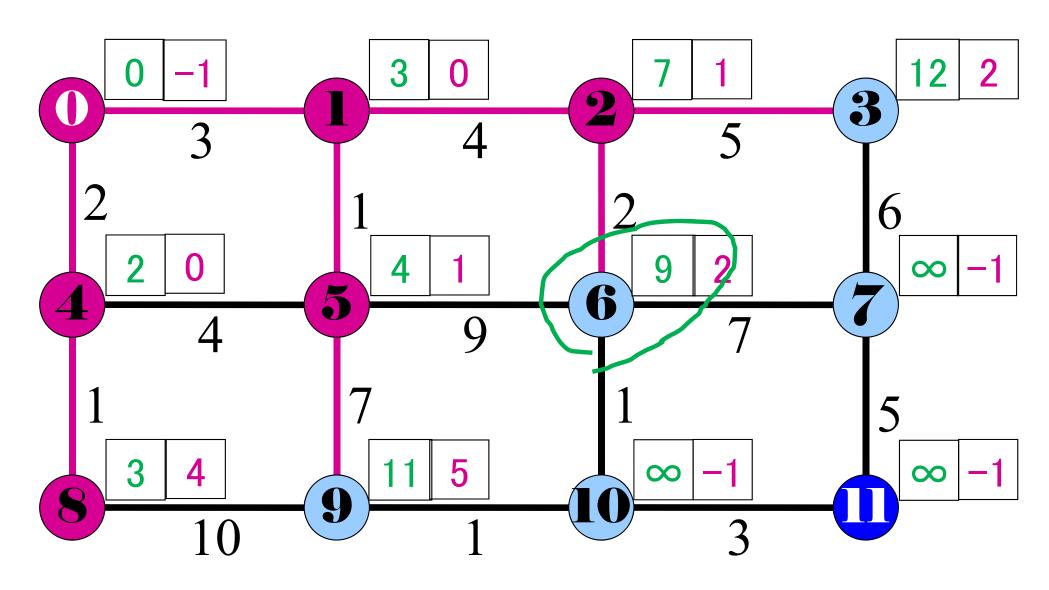
 $step2:未確定点集合Nが空(くう)(N=\emptyset)になったら終了. そうでなければ <math>step1-1$  へ戻る

未確定点集合 *N*={3,6,7,9,10,11} ≠ Ø より step1-1 へ戻る



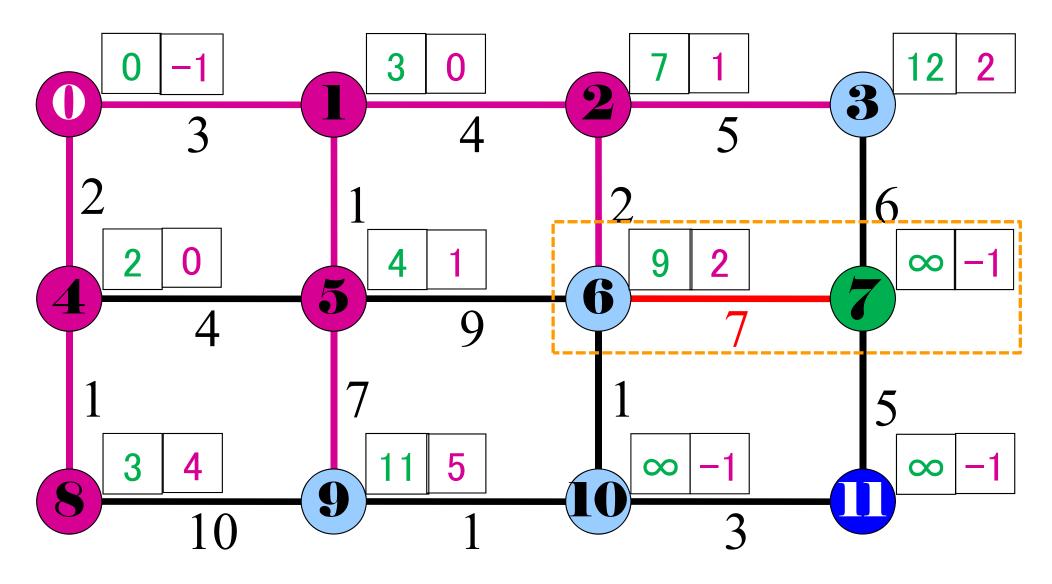
step1-1: 未確定点 $v \in N$  について  $\underline{d(v)}$ が最小の点 を見つける

未確定点集合  $N=\{3,6,7,9,10,11\}$ で  $d(\cdot)$ 最小点 6 を見つけた



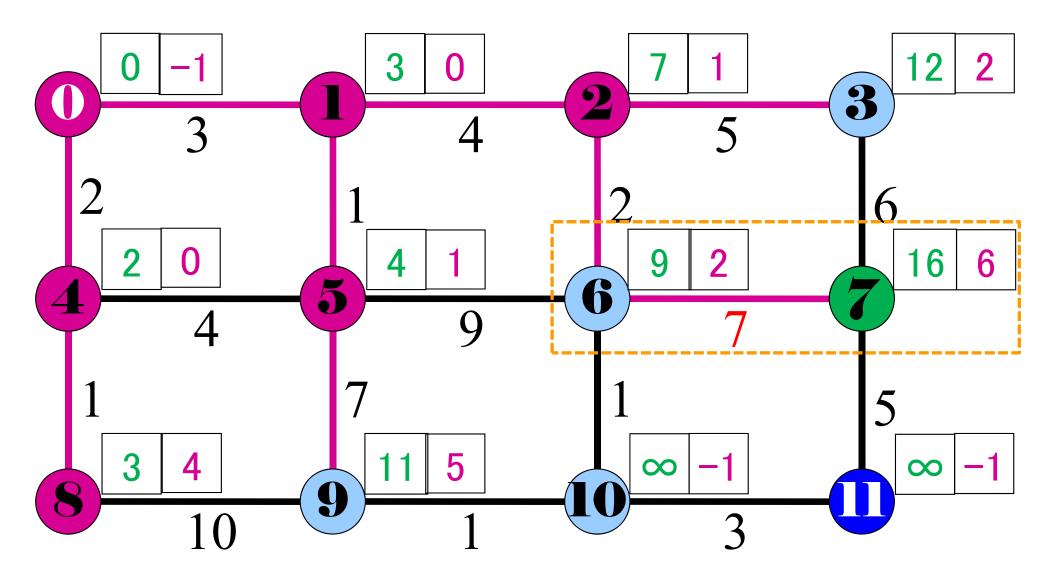
**step1-2:** その点vから出る全枝  $e \in E$  について「<u>距離ラベルd(v)</u> + 枝コストc(e)」を計算し、枝先点u の距離ラベルd(u) と比較し、もしd(v)+c(e) < d(u) なら、d(u) := d(v)+c(e)、p(u) := v とする

枝 $e_{67}$ は $d(6)+c(e_{67})=9+7=16<\infty=d(7)$ より、d(7):=16、p(7):=6 に



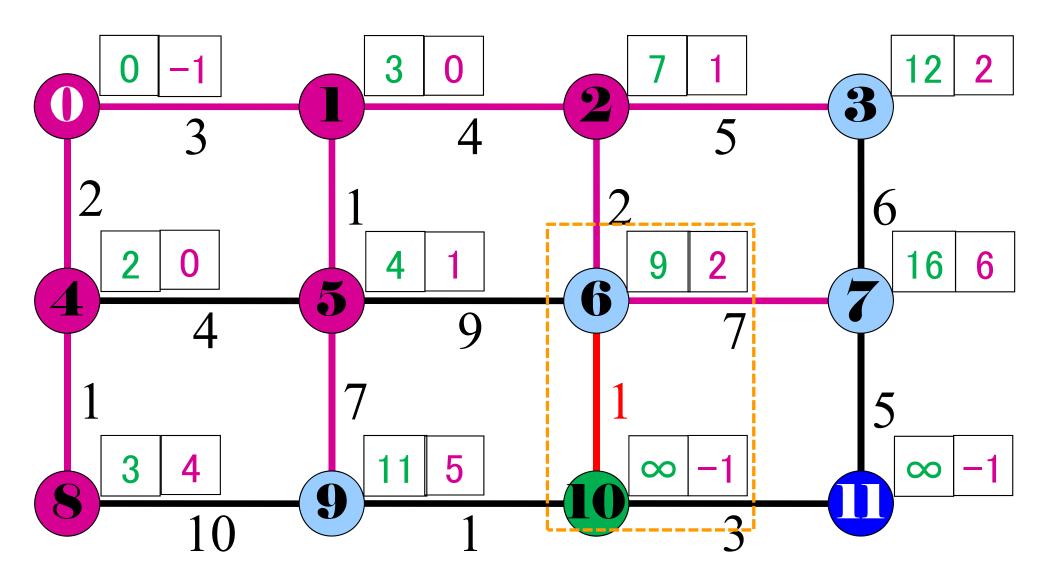
**step1-2:** その点vから出る全枝  $e \in E$  について「<u>距離ラベルd(v)</u> + 枝コストc(e)」を計算し,枝先点u の距離ラベルd(u) と比較し,もしd(v)+c(e) < d(u) なら,d(u) := d(v)+c(e),p(u) := v とする

枝 $e_{67}$ は  $d(6)+c(e_{67})=9+7=16<\infty=d(7)$  より、d(7):=16 , p(7):=6 に



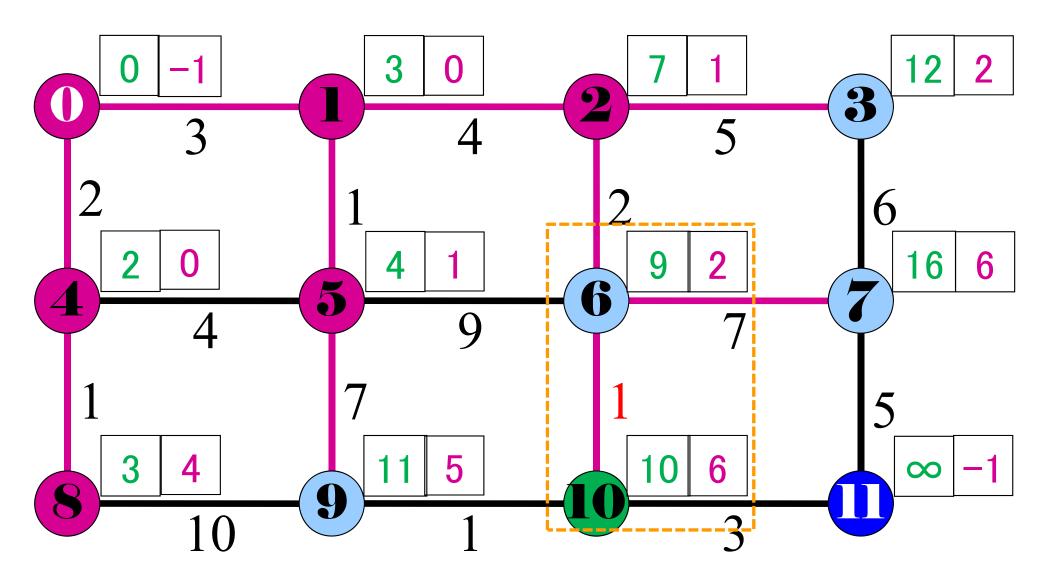
**step1-2:** その点vから出る全枝  $e \in E$  について「<u>距離ラベルd(v)</u> + 枝コストc(e)」を計算し,枝先点u の距離ラベルd(u) と比較し,もしd(v)+c(e) < d(u) なら,d(u) := d(v)+c(e),p(u) := v とする

枝 $e_{610}$ は  $d(6)+c(e_{610})=9+1=10<\infty=d(10)$ より、d(10):=10,p(10):=6に



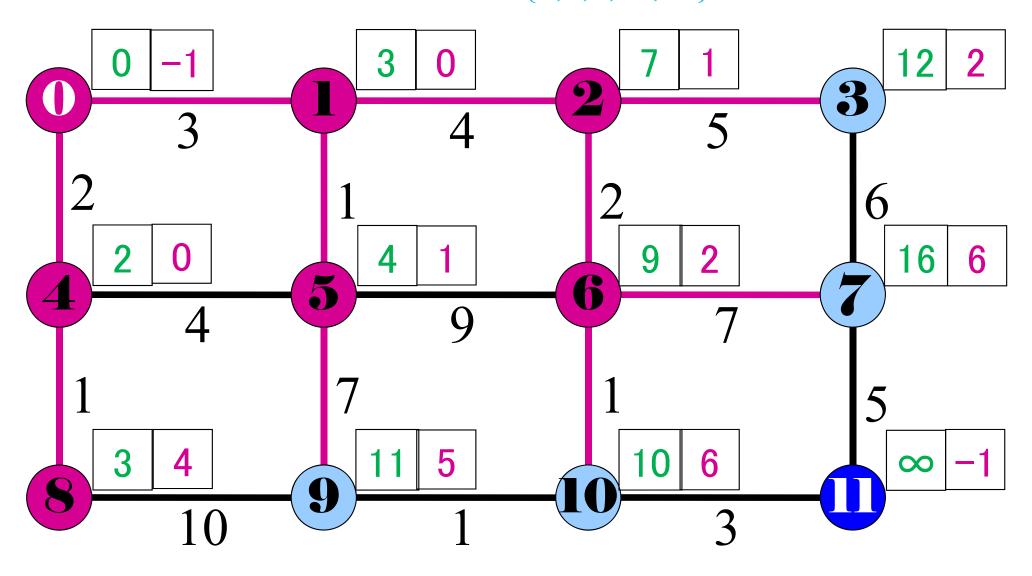
**step1-2:** その点vから出る全枝  $e \in E$  について「<u>距離ラベルd(v)</u> + 枝コストc(e)」を計算し,枝先点u の距離ラベルd(u) と比較し,もしd(v)+c(e) < d(u) なら,d(u) := d(v)+c(e),p(u) := v とする

枝 $e_{610}$ は  $d(6)+c(e_{610})=9+1=10<\infty=d(10)$ より、d(10):=10,p(10):=6に



step1-3: その点vから出る全枝 $e \in E$ の作業が全て終了したら、その点 $v \in N$ を未確定点集合Nから除去する

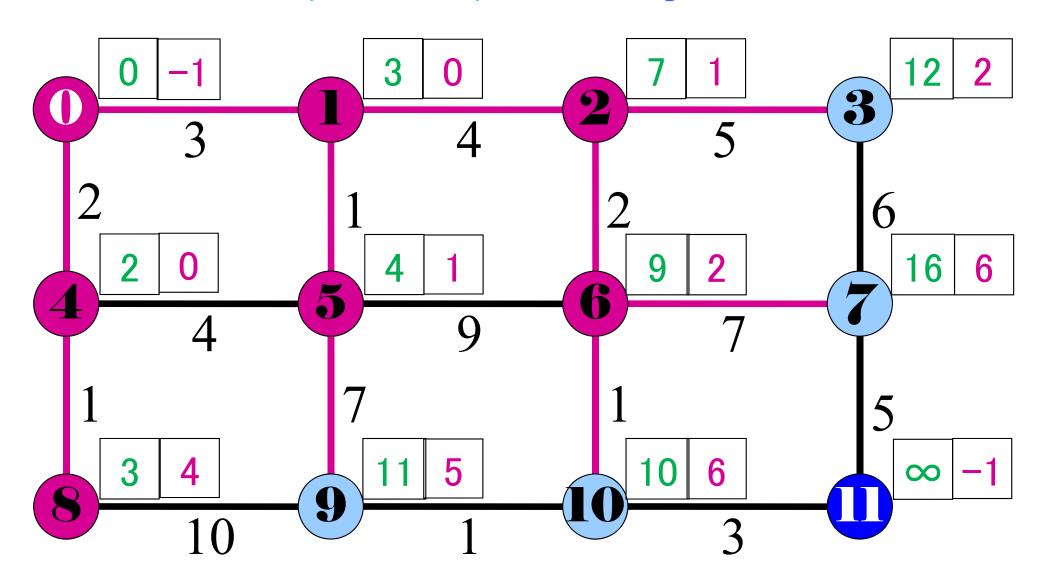
未確定点集合  $N=\{3,6,7,9,10,11\}$  $\rightarrow N=\{3,7,9,10,11\}$ 



# Dijkstra法 (終了判定)

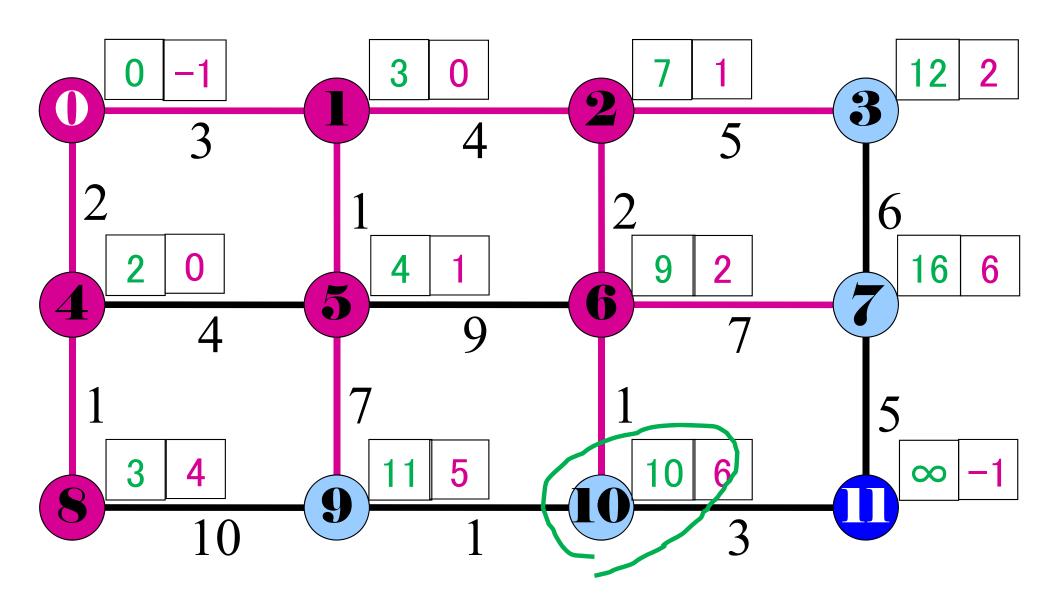
 $step2:未確定点集合Nが空(くう)(N=\emptyset)になったら終了. そうでなければ <math>step1-1$  へ戻る

未確定点集合 *N*={3,7,9,10,11} ≠ Ø より **step1-1** へ戻る



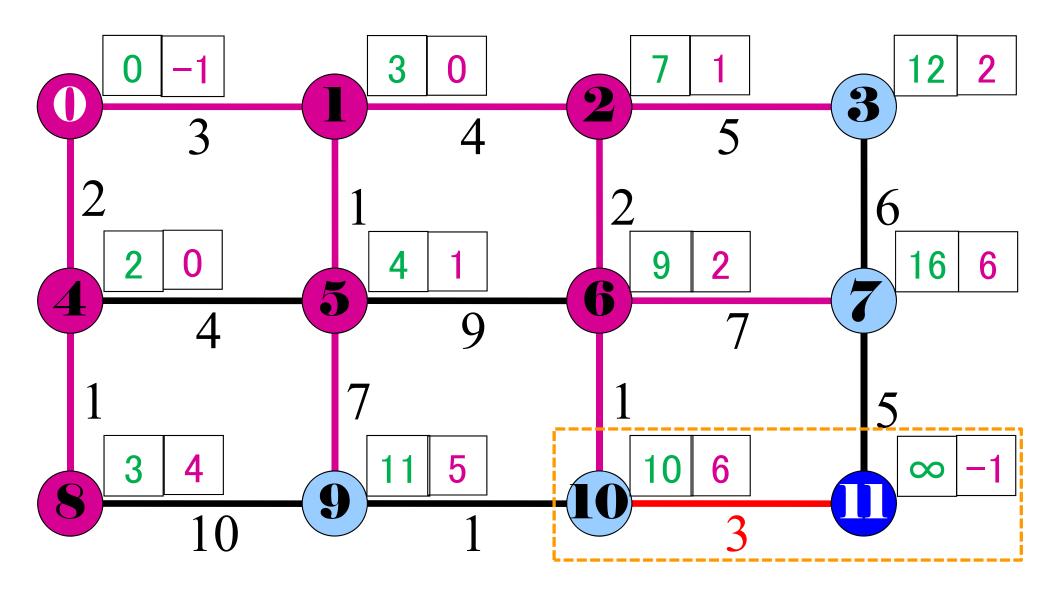
step1-1: 未確定点 $v \in N$  について  $\underline{d(v)}$ が最小の点 を見つける

未確定点集合 N={3,7,9,10,11}で d(•)最小点 10 を見つけた



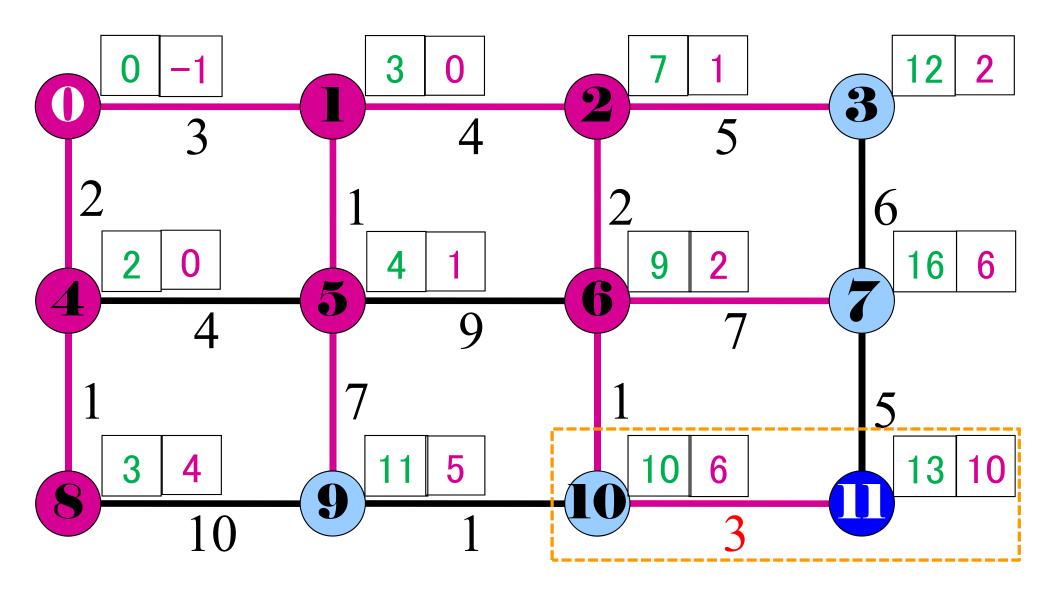
**step1-2:** その点vから出る全枝  $e \in E$  について「<u>距離ラベルd(v)</u> + 枝コストc(e)」を計算し、枝先点u の距離ラベルd(u) と比較し、もしd(v)+c(e) < d(u) なら、d(u) := d(v)+c(e),p(u) := v とする

枝 $e_{1011}$ は $d(10)+c(e_{1011})=10+3=13$ < $\infty=d(11)$ よりd(11):=13, p(11):=10



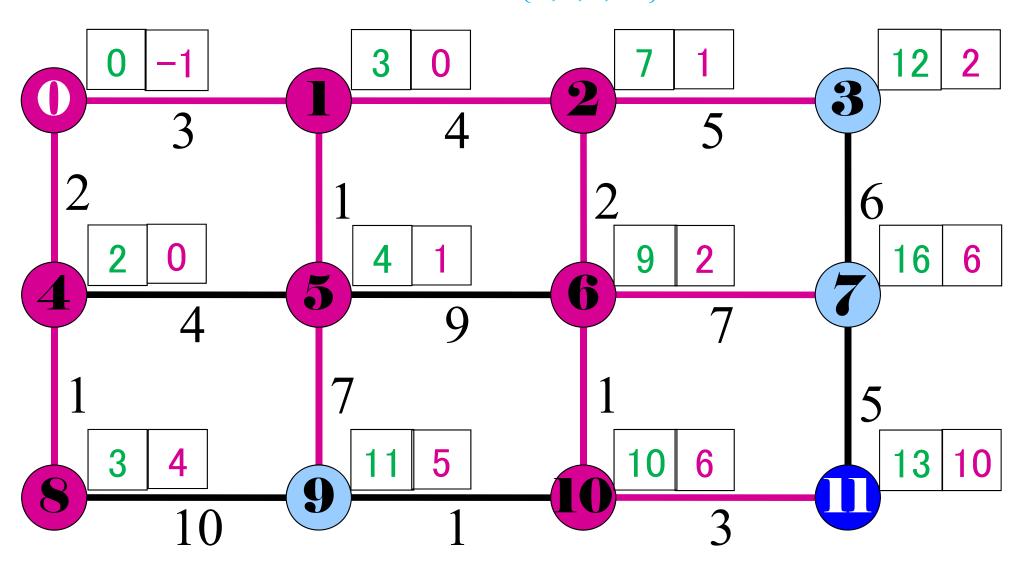
**step1-2:** その点vから出る全枝  $e \in E$  について「<u>距離ラベルd(v)</u> + 枝コストc(e)」を計算し,枝先点u の距離ラベルd(u) と比較し,もしd(v)+c(e) < d(u) なら,d(u) := d(v)+c(e),p(u) := v とする

枝 $e_{1011}$ は $d(10)+c(e_{1011})=10+3=13$ < $\infty=d(11)$ よりd(11):=13, p(11):=10



step1-3: その点vから出る全枝 $e \in E$ の作業が全て終了したら、その点 $v \in N$ を未確定点集合Nから除去する

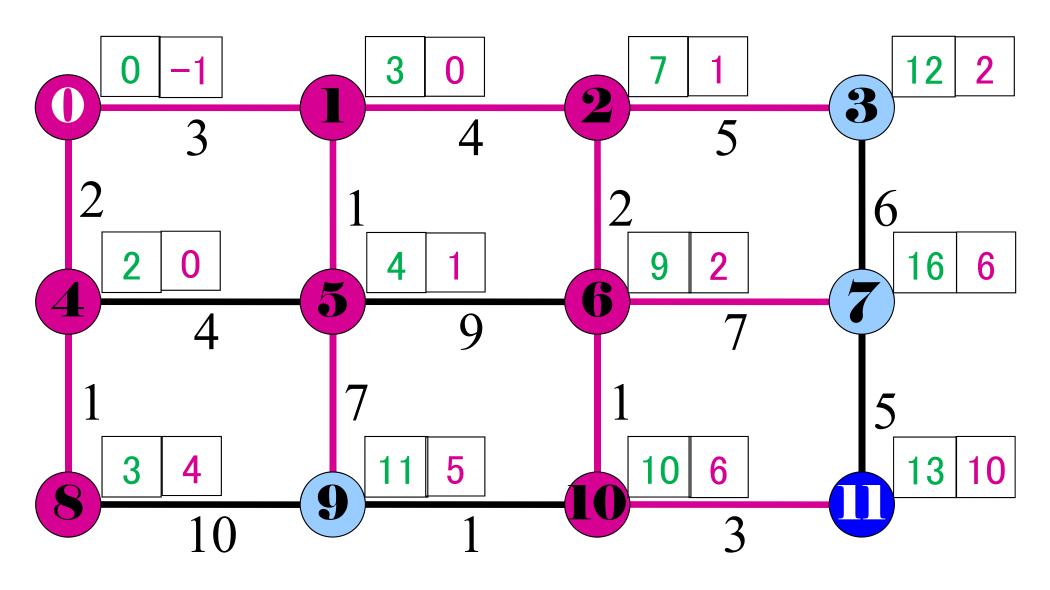
未確定点集合  $N=\{3,7,9,10,11\}$  $\rightarrow N=\{3,7,9,11\}$ 



# Dijkstra法 (終了判定)

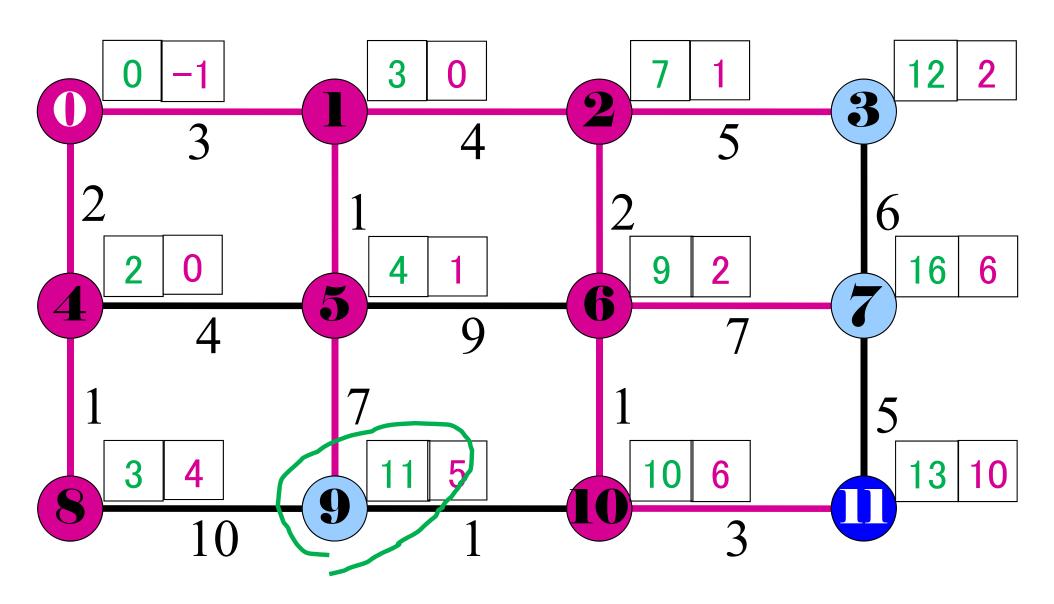
 $step2:未確定点集合Nが空(くう)(N=\emptyset)になったら終了. そうでなければ <math>step1-1$  へ戻る

#### 未確定点集合 *N*={3,7,9,11} ≠ Ø より step1-1 へ戻る



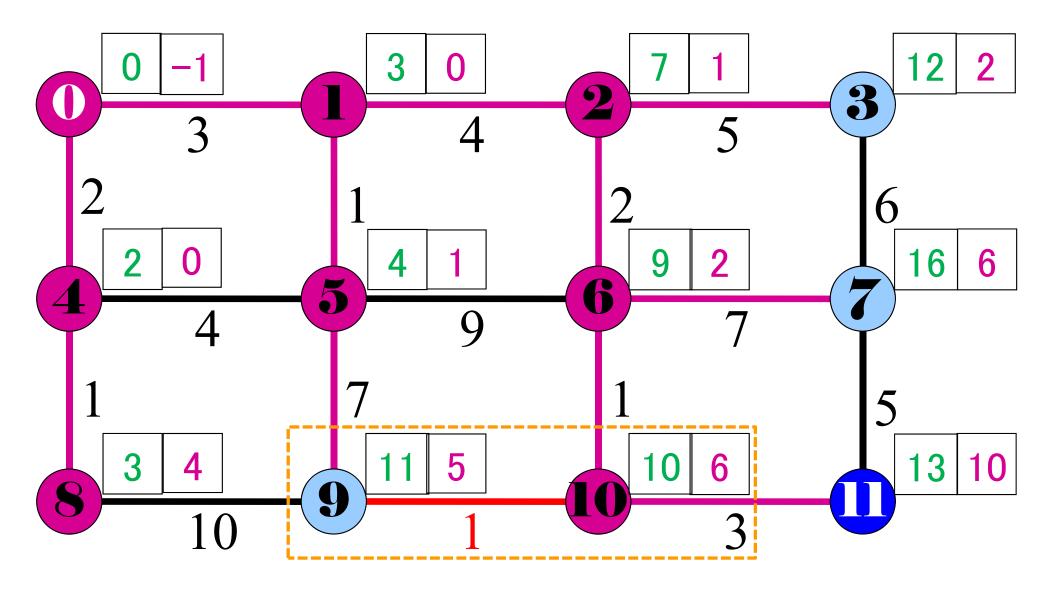
step1-1: 未確定点 $v \in N$  について  $\underline{d(v)}$ が最小の点 を見つける

未確定点集合 *N*={3,7,9,11}で *d*(•)最小点 9 を見つけた



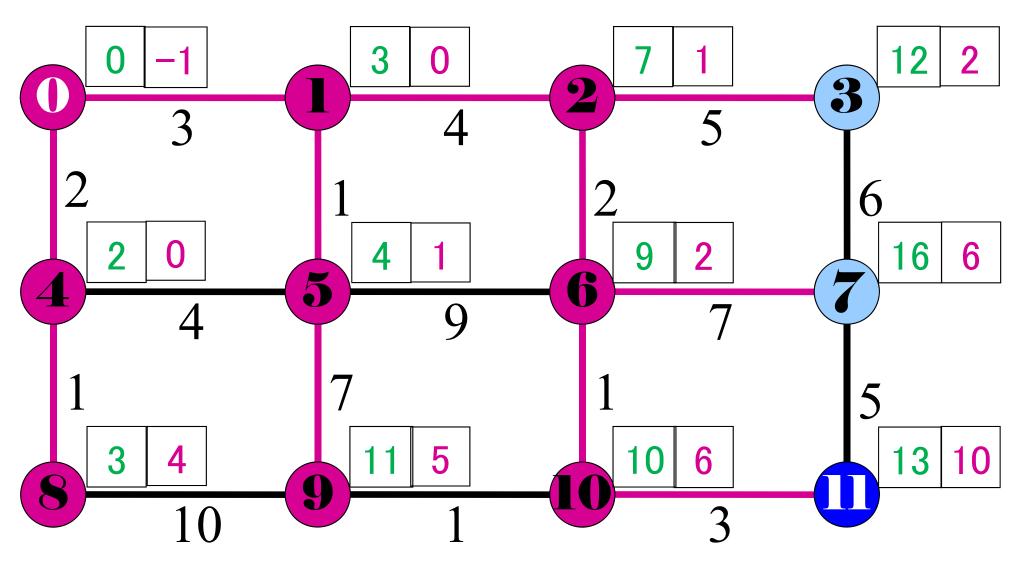
**step1-2:** その点vから出る全枝  $e \in E$  について「<u>距離ラベルd(v)</u> + 枝コストc(e)」を計算し、枝先点u の距離ラベルd(u) と比較し、もしd(v)+c(e) < d(u) なら、d(u) := d(v)+c(e)、p(u) := v とする

枝 $e_{910}$ は $d(9)+c(e_{910})=11+1=12>10=d(10)$  より、<u>更新しない</u>



step1-3: その点vから出る全枝 $e \in E$ の作業が全て終了したら、その点 $v \in N$ を未確定点集合Nから除去する

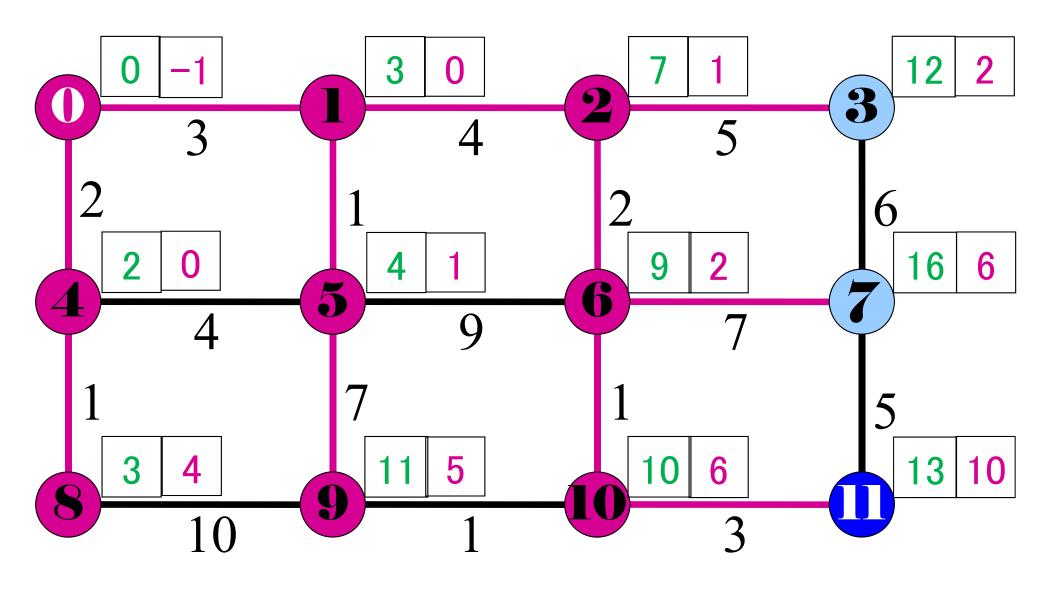
未確定点集合  $N=\{3,7,9,11\}$  $\rightarrow N=\{3,7,11\}$ 



# Dijkstra法 (終了判定)

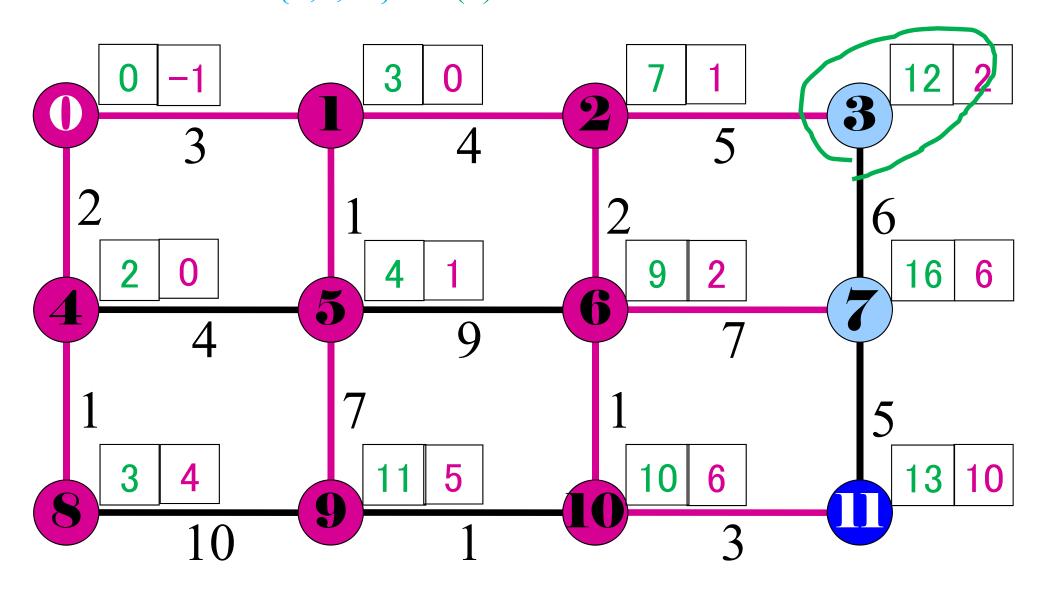
 $step2:未確定点集合Nが空(くう)(N=\emptyset)になったら終了. そうでなければ <math>step1-1$  へ戻る

#### 未確定点集合 *N*={3,7,11} ≠ Ø より **step1-1** へ戻る



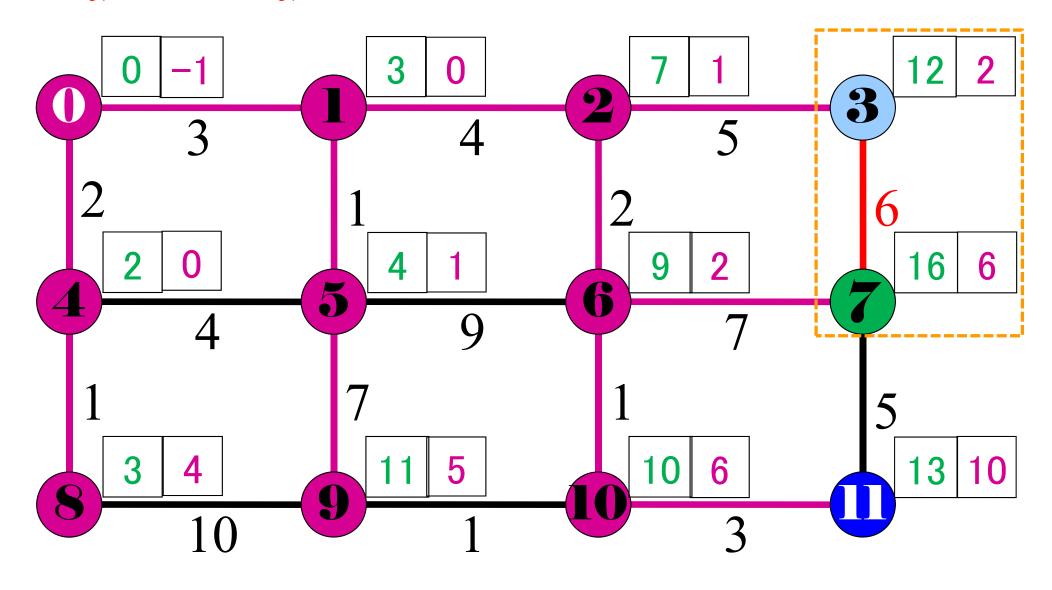
step1-1: 未確定点 $v \in N$  について  $\underline{d(v)}$ が最小の点 を見つける

未確定点集合 N={3,7,11}で d(•)最小点 3 を見つけた



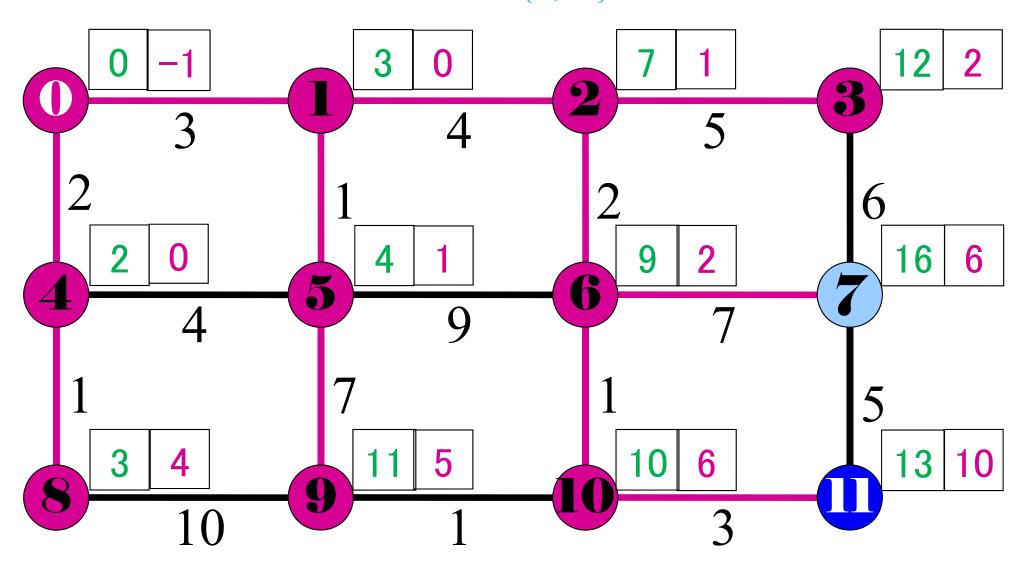
**step1-2:** その点vから出る全枝  $e \in E$  について「<u>距離ラベルd(v)</u> + 枝コストc(e)」を計算し,枝先点u の距離ラベルd(u) と比較し,もしd(v)+c(e) < d(u) なら,d(u) := d(v)+c(e),p(u) := v とする

枝 $e_{37}$ は $d(3)+c(e_{37})=12+6=18>16=d(7)$ より、更新しない



step1-3: その点vから出る全枝 $e \in E$ の作業が<u>全て終了</u>したら、その点 $v \in N$  を未確定点集合N から除去する

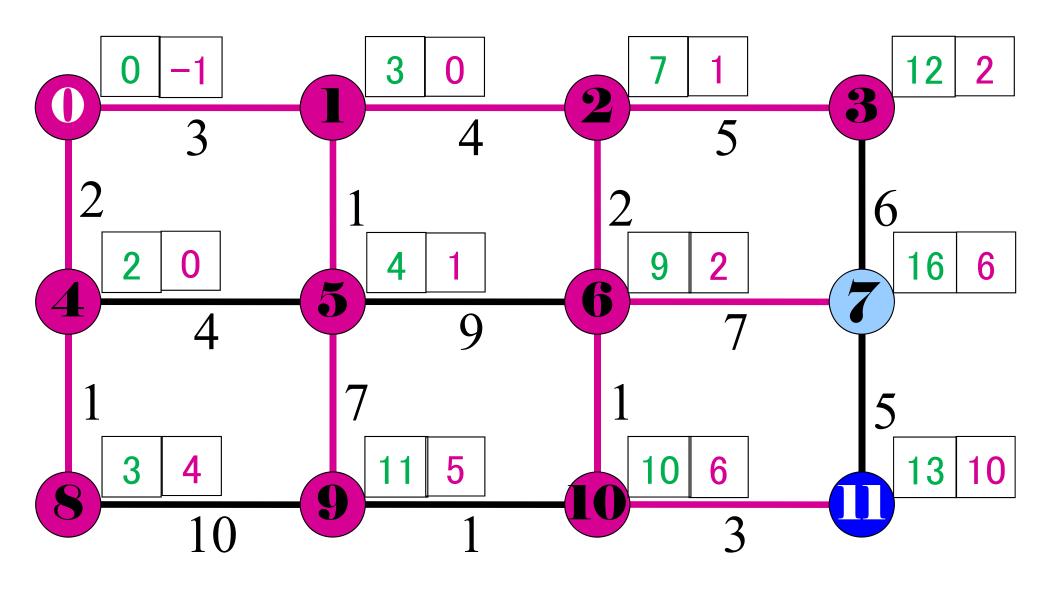
未確定点集合  $N=\{3,7,11\}$  $\rightarrow N=\{7,11\}$ 



# Dijkstra法 (終了判定)

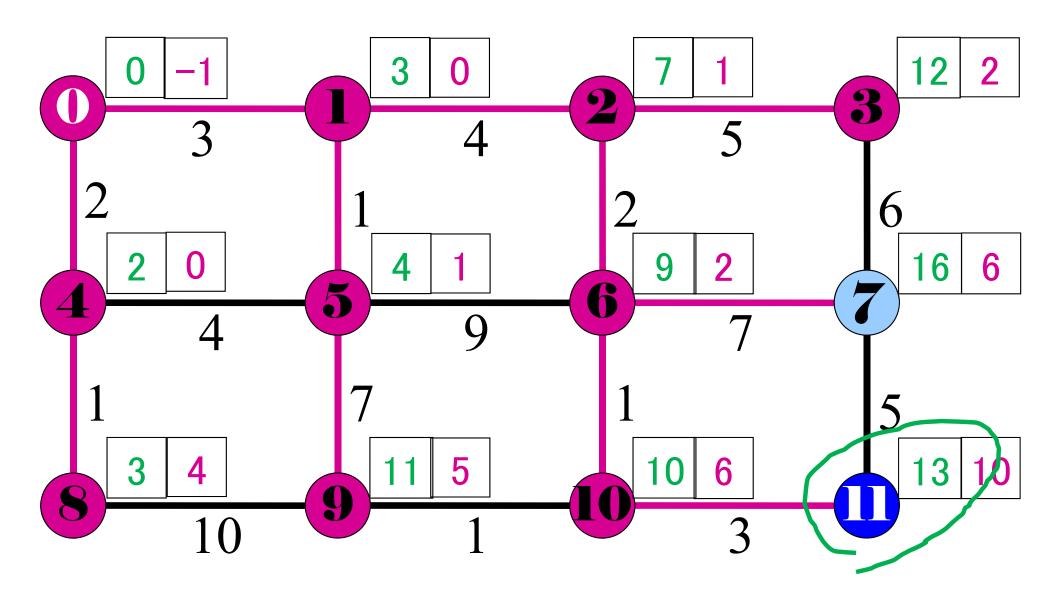
 $step2:未確定点集合Nが空(くう)(N=\emptyset)になったら終了. そうでなければ <math>step1-1$  へ戻る

#### 未確定点集合 *N*={7,11} ≠ Ø より **step1-1** へ戻る



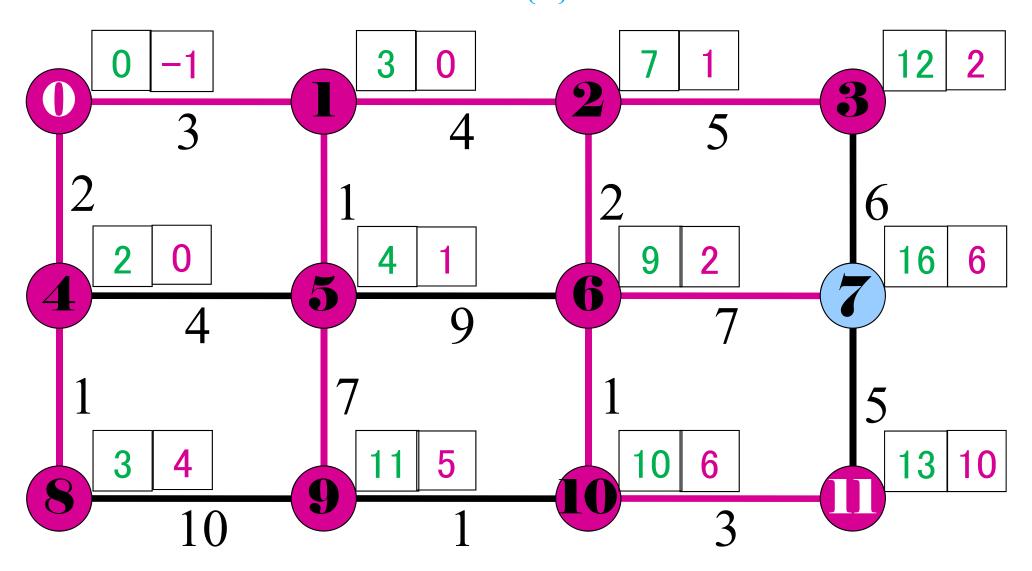
step1-1: 未確定点 $v \in N$  について  $\underline{d(v)}$ が最小の点 を見つける

未確定点集合 N={7,11}で d(•)最小点 11 を見つけた



step1-3: その点vから出る全枝 $e \in E$ の作業が<u>全て終了</u>したら、その点 $v \in N$  を未確定点集合N から除去する

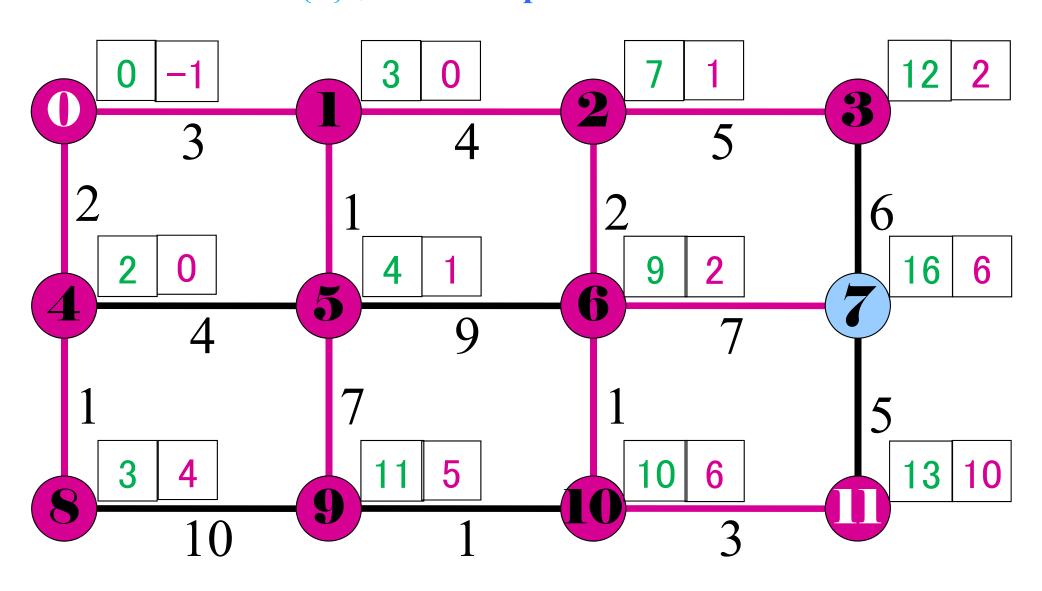
未確定点集合  $N=\{7,11\}$  $\rightarrow N=\{7\}$ 



# Dijkstra法 (終了判定)

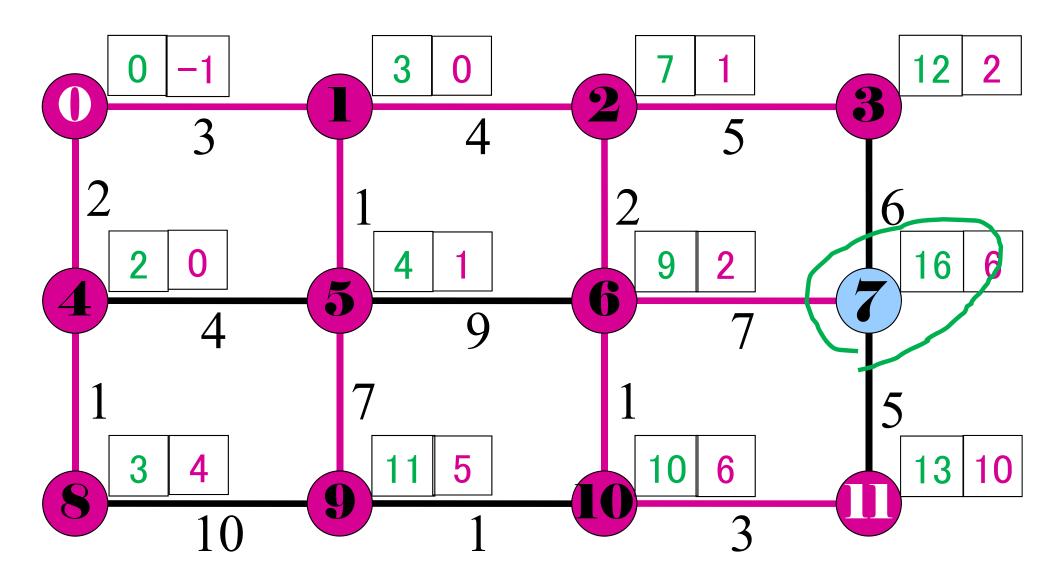
 $step2:未確定点集合Nが空(くう)(N=\emptyset)になったら終了. そうでなければ <math>step1-1$  へ戻る

#### 未確定点集合 *N*={7} ≠ Ø より **step1-1** へ戻る



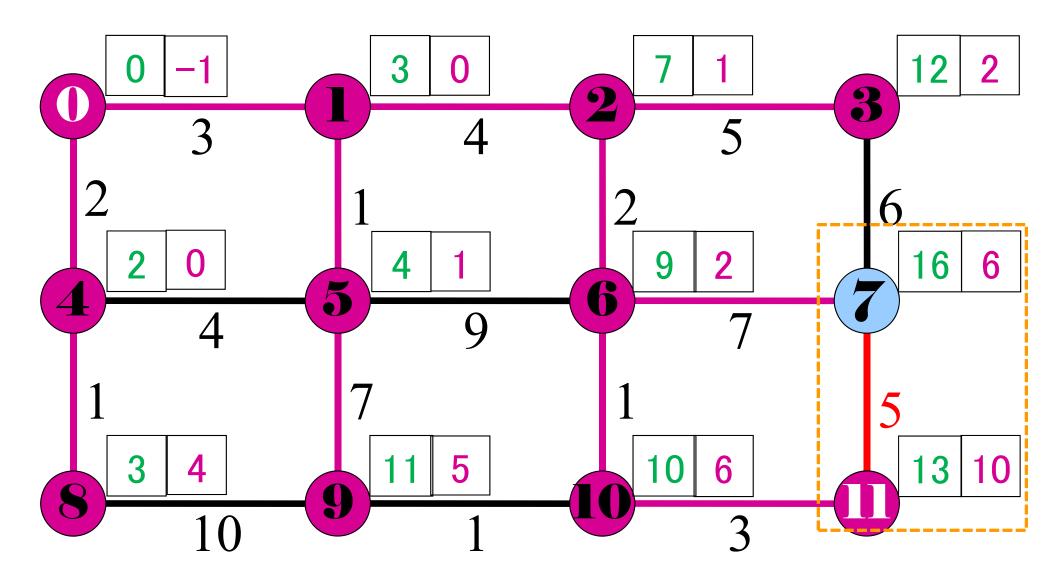
step1-1: 未確定点 $v \in N$  について  $\underline{d(v)}$ が最小の点 を見つける

未確定点集合 N={7}で d(•)最小点 7 を見つけた



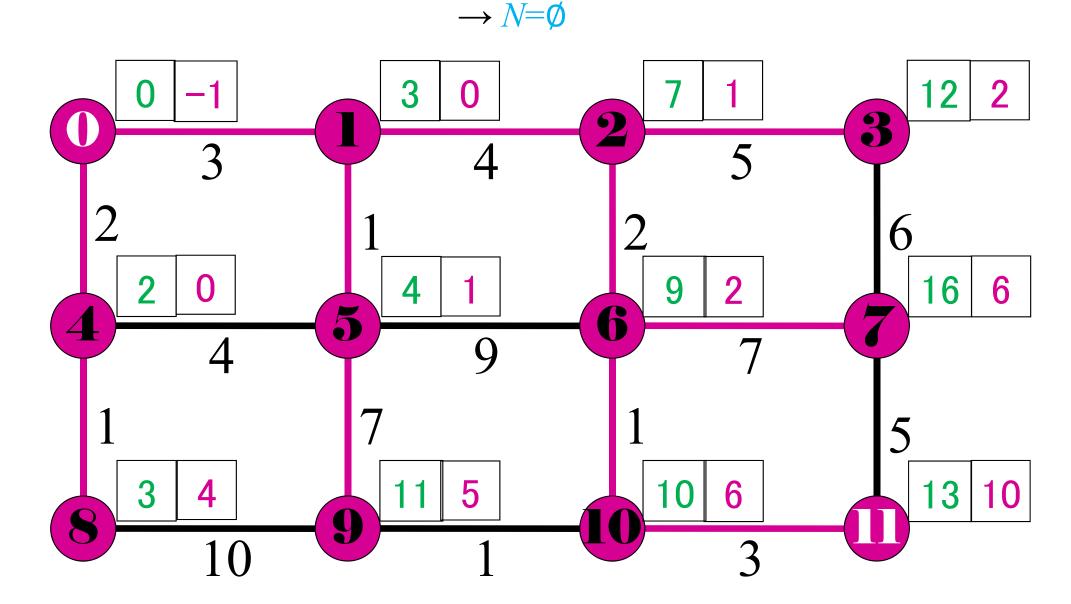
**step1-2:** その点vから出る全枝  $e \in E$  について「<u>距離ラベルd(v)</u> + 枝コストc(e)」を計算し、枝先点u の距離ラベルd(u) と比較し、もしd(v)+c(e) < d(u) なら、d(u) := d(v)+c(e),p(u) := v とする

枝 $e_{711}$ は $d(7)+c(e_{711})=16+5=21>13=d(11)$ より、更新しない



step1-3: その点vから出る全枝 $e \in E$ の作業が<u>全て終了</u>したら、その点 $v \in N$  を未確定点集合N から除去する

# 未確定点集合 $N=\{7\}$



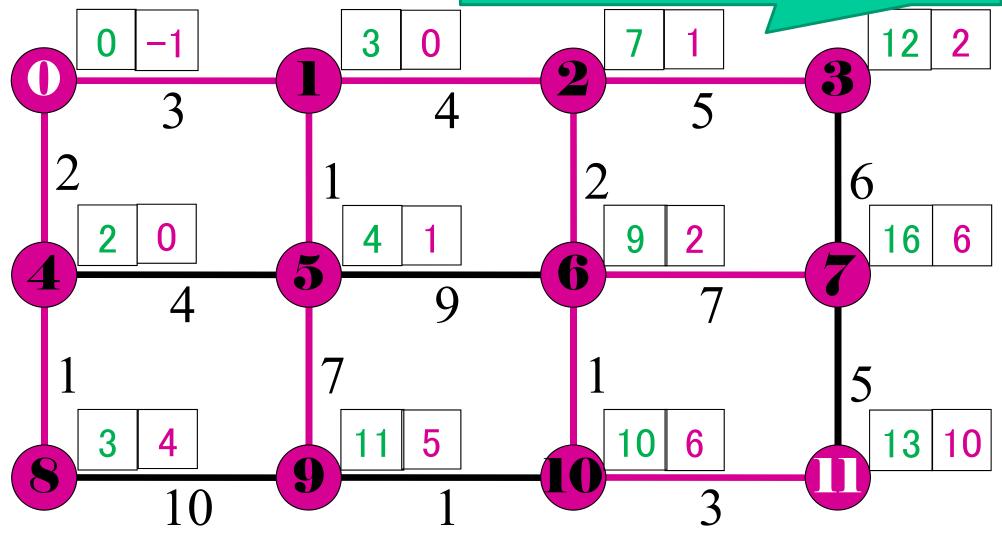
# Dijkstra法 (終了判定)

 $step2:未確定点集合Nが空(くう)(N=\emptyset)$ になったら終了. そうでなければ step1-1 へ戻る

未確定点集合 N=Ø より終了

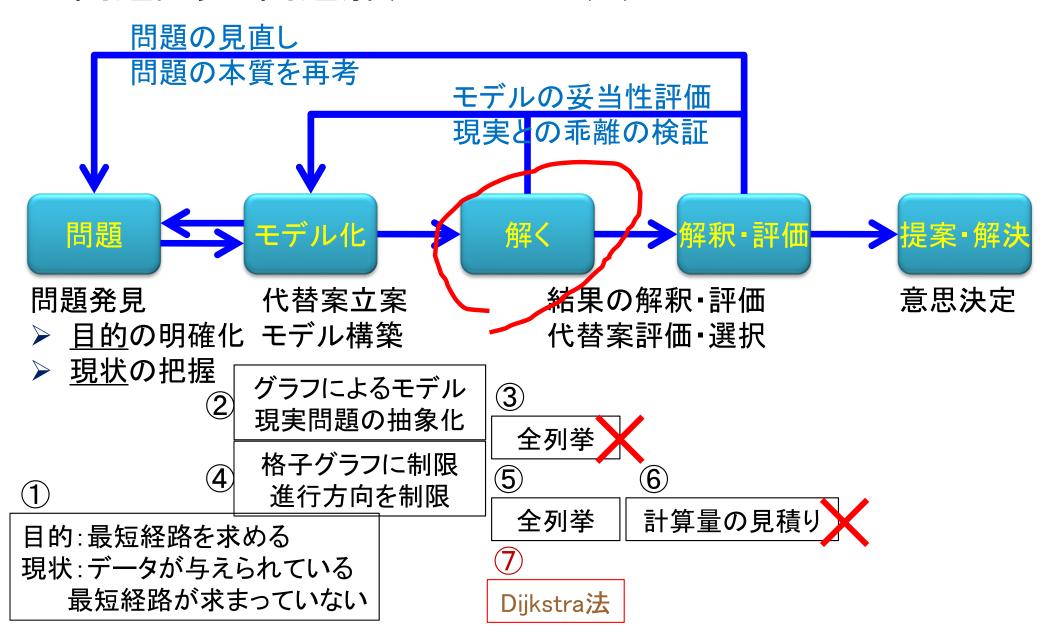
始点から全点への最短路が求まっている 各点の距離ラベルは始点からその点までの最 小コストを表す

各点から親ラベルをたどる路が最短路となる



# 問題解決とは?

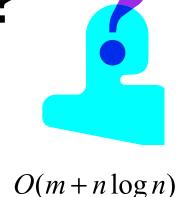
> 問題発見・問題解決から意思決定まで



# 評価: Dijkstra法って速いのか?

• 点の数を n とすると, 大雑把な見積もりで,

$$O(n^2)$$
 多項式オーダー



・ 点の数 n を右向枝数R, 下向枝数Dで表すと

$$n = (R+1) \times (D+1)$$



コンピュータに計算させてみよう!

簡単のため  $n^2$  の5倍の浮動小数点演算回数で計算できると仮定.

# 評価: Dijkstra法って速いのか?

| 442.01 | <b>PFLOPS</b> | 665 GFLOPS |
|--------|---------------|------------|
| TTZOUL |               |            |

| R(横) | D(縦) | 全経路                   | 富岳&しらみつぶし     | Core i7 & Dijkstra |
|------|------|-----------------------|---------------|--------------------|
| 3    | 2    | 10                    | 0.000000000秒  | 0.000000001秒       |
| 6    | 4    | 210                   | 0.000000000秒  | 0.000000009秒       |
| 10   | 5    | 3,003                 | 0.000000000秒  | 0.000000033秒       |
| 20   | 10   | 30,045,015            | 0.000000002秒  | 0.000000401秒       |
| 25   | 25   | $1.3 \times 10^{14}$  | 0.014299519秒  | 0.000003436秒       |
| 30   | 30   | $1.2 \times 10^{17}$  | 16.053652392秒 | 0.000006944秒       |
| 40   | 40   | $1.1 \times 10^{23}$  | 225.21 日      | 0.000021246秒       |
| 50   | 50   | $1.0 \times 10^{29}$  | 723,794.38年   | 0.000050866秒       |
| 100  | 100  | $9.1 \times 10^{58}$  | 9.41E+25宙龄    | 0.000782409秒       |
| 500  | 500  | $2.7 \times 10^{299}$ | 1.41E+267宙齢   | 0.473695504秒       |

世界最速SuperComp

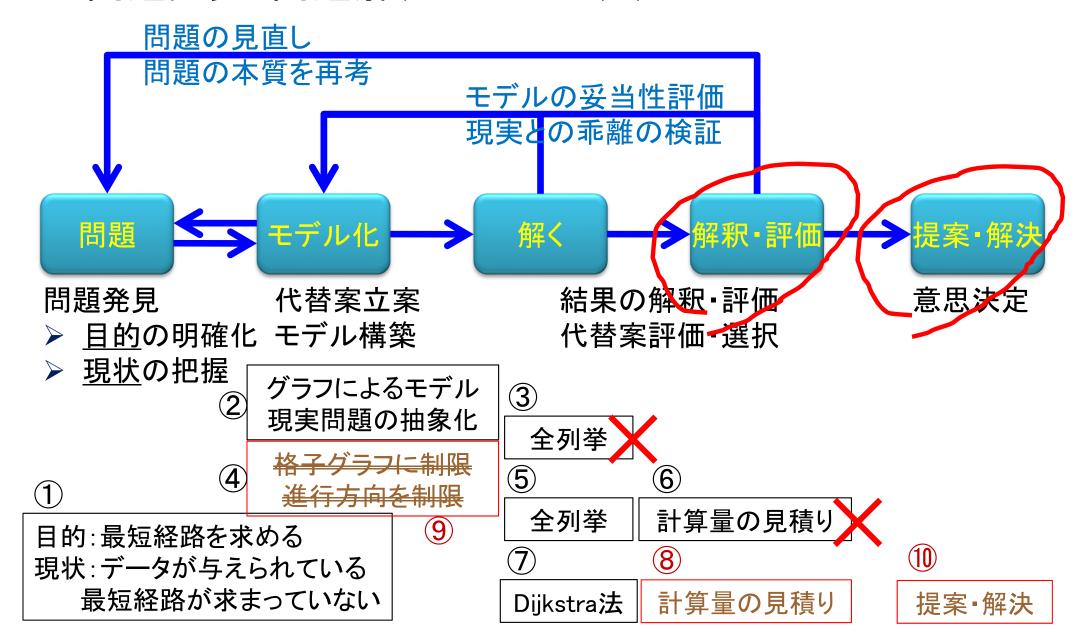
+力技(しょぼい方法)



そこらのPC +人間の知恵

# 問題解決とは?

> 問題発見・問題解決から意思決定まで

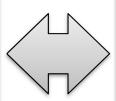


# 意思決定支援・ビジネスサポート

ナビは存在しない

実現

素朴な方法しか ない世界



Dijkstra法が 考案された 世界

#### 参考文献

コンピュータに仕事を奪われつつある人類...

[1] 新井紀子

「コンピュータが仕事を奪う」日経新聞社(2010)

[2] E. Brynjolfsson, A. McAfee, 村井章子訳「機械との競争」日経BP社(2013)

人類の創造的 な仕事!

ナビが

## Google Colaboratory で dijkstra法実践

- ➤ 最短路問題を作成し、pythonで解く
  - > Google Colaboratory を利用し、python, networkx, etc. を使う
  - ▶ 利用方法(初回)
    - (1) google アカウントにログインし、google drive へ移動
    - (2)「新規」一「その他」一「アプリを追加」を選択
    - (3)「Google Colaboratory」を追加
  - ▶ 利用方法(2回目以降)
    - (1) google アカウントにログインし、google drive へ移動
    - (2)「新規」ー「その他」ー「Google Colaboratory」を選択
  - ▶ ファイルは google drive に自動保存される. 一度作成したら、次回以降は、 google drive 内のファイル [\*\*\*.ipynb] を選択して、 開くことができる
  - ➤ Jupyter Notebook と同様に使える
  - > networkx, matplotlib などの pythonライブラリは default で使用可能

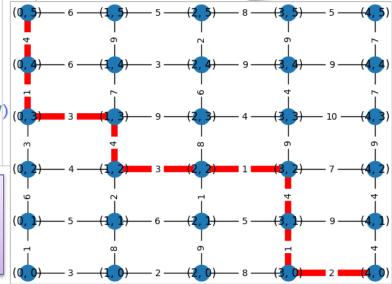
# Google Colaboratory で dijkstra法実践

▶ 例1)ランダム格子グラフ作成と最短路求解/結果表示

```
%matplotlib inline
                                         Google colaboratory O
import matplotlib.pyplot as plt
                                            [コード] 内に記述
import networkx as nx
import random
G = nx. grid 2d graph(5, 6)
                        # 点が6行5列のランダム格子グラフ作成
for (i,j) in G. edges():
 G[i][j]["weight"]=random.randint(1.10) # 枝に1~10のランダムコスト付与
path = nx.dijkstra path(G, (0,5), (4,0), weight="weight") # 最短路求解
pos={(i,j):(i,j) for (i,j) in G. nodes()} # 描画用:点の配置設定
edge_labels = {(i,j):str(G[i][j]["weight"]) for (i,j) in G.edges()} # 枝コストラベル
edge list = []
                            # 最短路描画用
i = path[0]
for count in range(1, len(path)):
 j = path[count]
 edge_list.append((i,j))
 i = i
nx.draw(G, pos. with labels=True) # ←格子グラフ描画 ↓ 最短経路を赤で描画
nx.draw(G, pos, with_labels=False, edgelist=edge_list, edge_color="red", width=7)
nx.draw networkx edge labels(G, pos, edge labels) # 枝コスト描画
plt.show()
```

コードの下にエラーメッセージが出たら、内容をよく読み、 コードの間違っている箇所を探して修正する。修正し終え たら再度実行ボタンを押す(正しく出来るまでこの繰り返し) 全て記述出来たら, 左側の三角(▶)を押すと, コードが実行される

コードの下に 実行結果が表示される



Google Colaboratory で dijkstra法実践

#### > 例2) グラフ作成

```
G=(V, E)

V=\{1,2,3,4,5,6\}

E=\{\{1,2\},\{1,3\},\{2,3\},...,\{5,6\}\}\}

edgecost=(3, 5, 2, ..., 2)
```

と最短路求解/結果表示

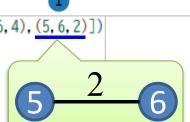
%matplotlib inline import matplotlib.pyplot as plt import networkx as nx

#### 実行結果

```
G = nx. Graph() # ←空の無向グラフ作成 ↓無向グラフ(枝&コスト)設定
G. add_weighted_edges_from([(1,2,3),(1,3,5),(2,3,2),(2,4,4),(2,5,5),(3,4,2),(3,5,9),(4,5,3),(4,6,4),(5,6,2)])
path = nx. dijkstra_path(G, 1, 6, weight="weight") # 始点1終点6の最短路求解
```

```
pos = nx.spring_layout(G) # 描画用:点の配置設定(スプリング配置)
edge_labels = {(i,j):str(G[i][j]["weight"]) for (i,j) in G.edges()} # 枝コストラベル
edge_list =[] # 最短路描画用
i = path[0]
for count in range(1,len(path)):
    j = path[count]
    edge_list.append((i,j))
    i = j

nx.draw(G, pos, with_labels=True) # ←グラフ描画 ↓最短経路を赤で描画
nx.draw(G, pos, with_labels=False, edgelist=edge_list, edge_color="red",width=7)
nx.draw_networkx_edge_labels(G, pos, edge_labels) # 枝コスト描画
plt.show()
```



最初の3行 と ここは(例1)と同じ

# もつと知りたい人へ

#### • 参考文献

- グリッツマン, ブランデンベルク「最短経路の本」 シュプリンガー(2008)
- W.J.クック「驚きの数学 巡回セールスマン問題」 青土社(2013)
- 山本, 久保**「巡回セールスマン問題への招待」**朝倉書店(1997)
- 久保, 松井「組合せ最適化『短編集』」朝倉書店(1999)
- 松井, 根本, 宇野「**入門オペレーションズ・リサーチ」**東海大出版(2008)
- 久保「Pythonによる実務で役立つ最適化問題100+」
  朝倉書店(2022)

#### • 関連する授業

- 「ネットワークモデル分析A/B」(3,4セメ)
- 「最適化モデル分析」(5セメ)
- 「プログラミング」(3, 4セメ) etc...