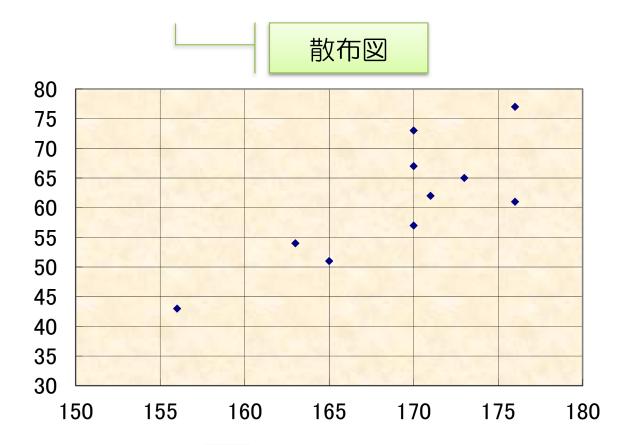
問題解決技法入門

3. Data Analysis 2. 2変数の相関 correlation(2) 散布図 scatter plot 相関係数 correlation coefficient

堀田 敬介

2変数の相関(2)

尺度によって 分析法が変わ ることに注意


• 2変数 x, y 間の<u>相関</u>を調べる方法(図表と式)

<1	>	A	В	C	D	E	F	G	Η	I	J	尺度
	性別 x	男	男	女	男	男	男	女	女	男	女	質的
	嗜好 y	紅茶	緑茶	珈琲	珈琲	緑茶	珈琲	紅茶	珈琲	珈琲	紅茶	質的
						フロス	集計		連関係			
<2	>	A	В	C	D	E	F	G	Н	I	J	
	飲量x	15	32	16	30	50	12	14	24	18	19	量的
	嗜好 y	紅茶	緑茶	珈琲	珈琲	緑茶	珈琲	紅茶	珈琲	珈琲	紅茶	質的
						点グラ	ラフ		相関	比		
<3	>	A	В	C	D	Е	F	G	Н	Ι	J	
	身長 x	176	170	163	173	170	171	165	170	176	156	量的
	体重 y	61	73	54	65	67	62	51	57	77	43	量的
			相関係	系数								

2変数の関係

□ 2変数の関係3: x(量的)×y(量的)図

	A	В	C	D	E	F	G	Н	I	J	
身長x	176	170	163	173	170	171	165	170	176	156	量的
体重y	61	73	54	65	67	62	51	57	77	43	量的

RとR commander について

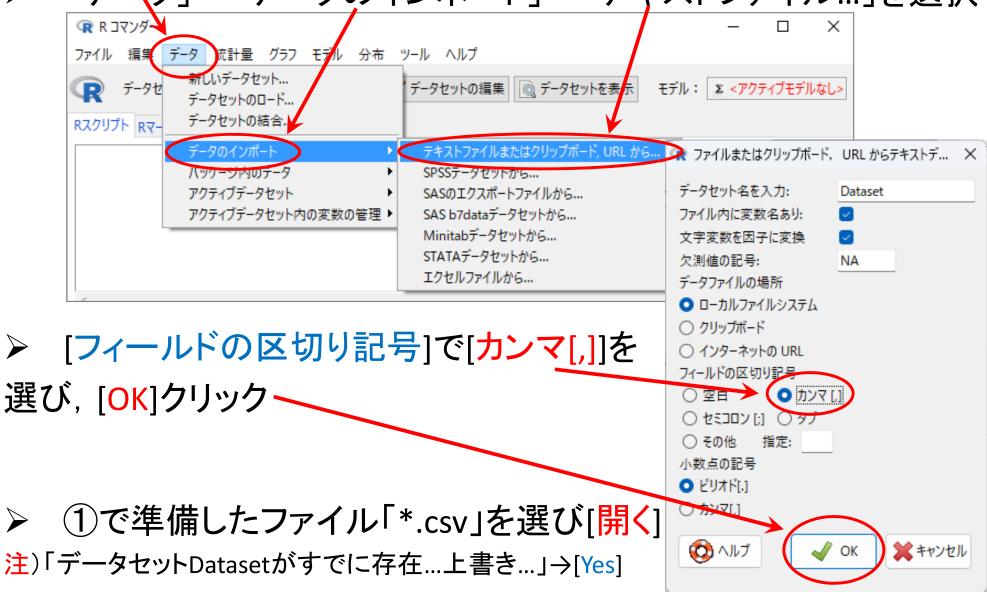
- R(アール)
 - データ解析・統計処理ソフト
 - The R Project for Statistical Computing
 - https://www.r-project.org/
 - R is a free software environment for statistical computing and graphics.
 - ※CUI(Character User Interface)で使用するため、初心者・初 級者には敷居が高い
- R commander (アール・コマンダー)
 - 初心者・初級者でも R を使用し易くするためのGUI(Graphical User Interface)パッケージ. Rから呼び出して使う library(Rcmdr)
 - The R Commander: A Basic-Statistics GUI for R
 - https://socialsciences.mcmaster.ca/jfox/Misc/Rcmdr/
 - The R Commander is a graphical user interface (GUI) to the free, opensource <u>R statistical software</u>.

Outline

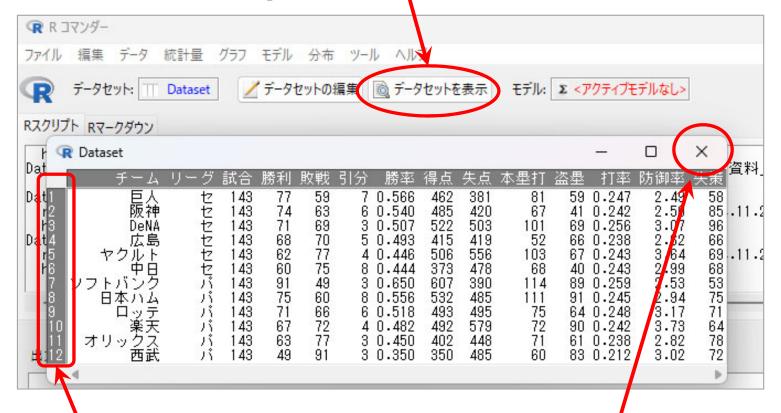
- 1. データの準備
 - ① データの準備(csvファイル)
 - ② R/R commander の起動
 - ③ データの読み込み(csv-fileをR/R commanderで開く)
 - ④ データの整備:ケース名の設定
- 2. R commander によるデータの視覚化
 - ⑤ 箱ひげ図 box plot, box-and-whisker plot
 - ⑥ 幹葉図 stem-and-leaf plot
 - ⑦ 散布図 scatter plot
 - ⑧ 散布図行列 scatter plot matrix
- 3. Rによるデータの視覚化
 - ⑨ 多次元尺度法 multi-dimensional scaling

① データの準備: csv ファイル

2024年プロ野球 セ・パ成績 (出典:スポーツナビ - Yahoo! JAPAN)

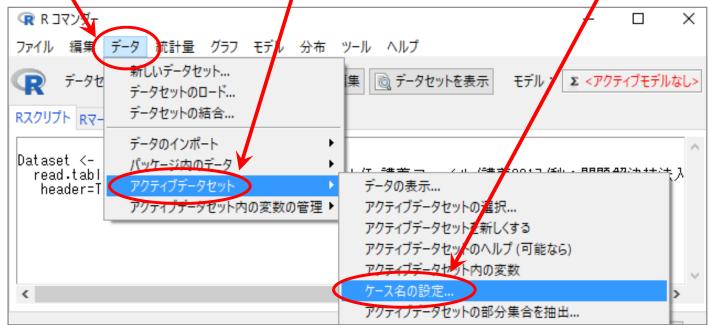

bb2024utf8.csv

※文字コードがutf8 でないと読込エラー が起きる (文字コードがsjisだと 「不正なマルチバイト 文字エラー」が出て 読込みに失敗する)

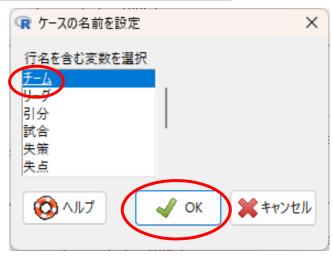

1 141.3			•	-									
チーム	リーグ	試合	勝利	敗戦	引分	勝率	得点	失点	本塁打	盗塁	打率	防御率	失策
巨人	セ	143	77	59	7	0.566	462	381	81	59	0.247	2.490	58
阪神	セ	143	74	63	6	0.540	485	420	67	41	0.242	2.500	85
DeNA	セ	143	71	69	3	0.507	522	503	101	69	0.256	3.070	96
広島	セ	143	68	70	5	0.493	415	419	52	66	0.238	2.620	66
ヤクルト	セ	143	62	77	4	0.446	506	556	103	67	0.243	3.640	69
中日	セ	143	60	75	8	0.444	373	478	68	40	0.243	2.990	68
ソフトバンク	パ	143	91	49	3	0.650	607	390	114	89	0.259	2.530	53
日本ハム	パ	143	75	60	8	0.556	532	485	111	91	0.245	2.940	75
ロッテ	パ	143	71	66	6	0.518	493	495	75	64	0.248	3.170	71
楽天	パ	143	67	72	4	0.482	492	579	72	90	0.242	3.730	64
オリックス	パ	143	63	77	3	0.450	402	448	71	61	0.238	2.820	78
西武	パ	143	49	91	3	0.350	350	485	60	83	0.212	3.020	72

- ② Rの起動: 「R x64 X.X.X」を選択
 - 注) x64 = 64bit用のプログラム(アプリ), X.X.X = Rのバージョン
 - 注)32bit PCの場合は、「R i386 X.X.X」を選択
 - 注) 起動すると「R Console」が開く、コマンドプロンプト(>)で「library(Rcmdr)」と打ち[Enter] → R commander が起動

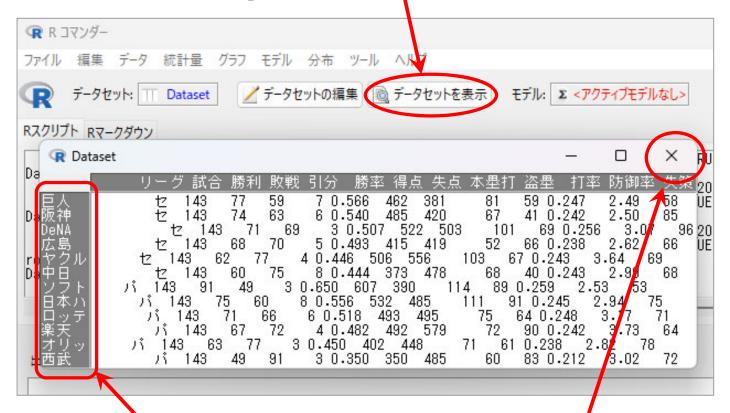
- ③ データの読込
 - 「データ」ー「データのインポート」ー「テキストファイル…」を選択



- ③ データの読込(読み込んだファイルの確認)



- <u>ケース名(左端)が通し番号(1,2,...,12)であることを確認</u>
- ➤ 確認できたら、「Dataset」の「×」をクリックして「閉じる」


- ④ データにケース名を設定する
 - 「データ」ー「アクティブデータセット」ー「ケース名の設定」選択

▶ [行名を含む変数を選択]で [チーム]を選び[OK]

- ④ データにケース名を設定する(設定確認)
 - ▶ [データセットを表示]ボタンをクリックし内容を確認

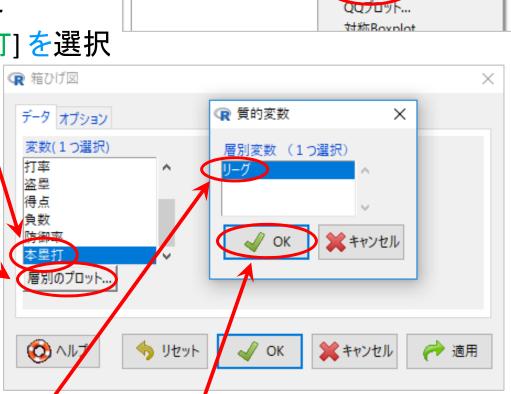
- ▶ 指定した変数がケース名になっているよとを確認
- ➤ 確認できたら、「Dataset」の「×」をクリックして「閉じる」

R コマンダー

Rスクリプト Rマークダウン

Dataset\$X <- NULL

-タヤット: III


Dataset <- read.table("C

sep="," na.strings="N row.names(Dataset) <- as

- 5 箱ひげ図を描く
 - ▶ 「グラフ」ー「箱ひげ図」を選択

- ▶ 『箱ひげ図』で以下を設定
 - ▶ [変数(1つ選択)]で[本塁打]を選択

▶ [層別のプロット]クリック

ファイル 編集 データ 統計量 グラフ モデル 分布 ツール

色パレット...

ドットプロット... ヒストグラム...

密度推定...

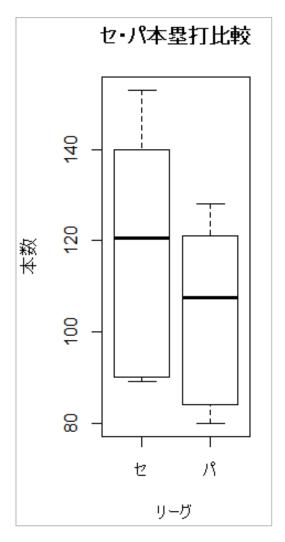
インデックスプロット...

離散数値変数のプロット...

データヤッ

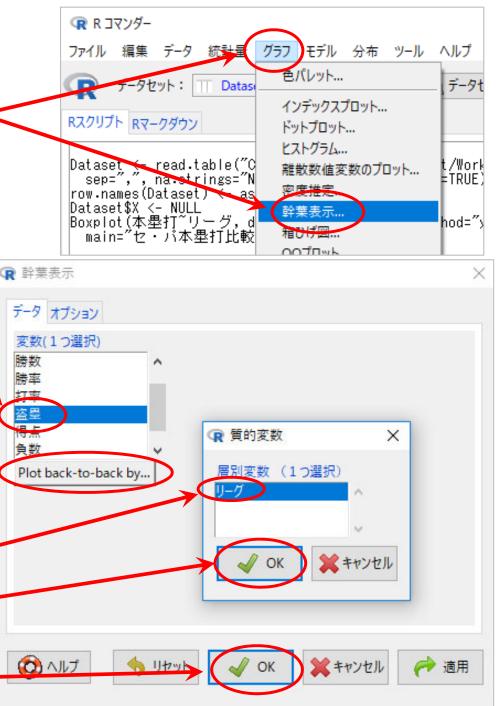
√Works.

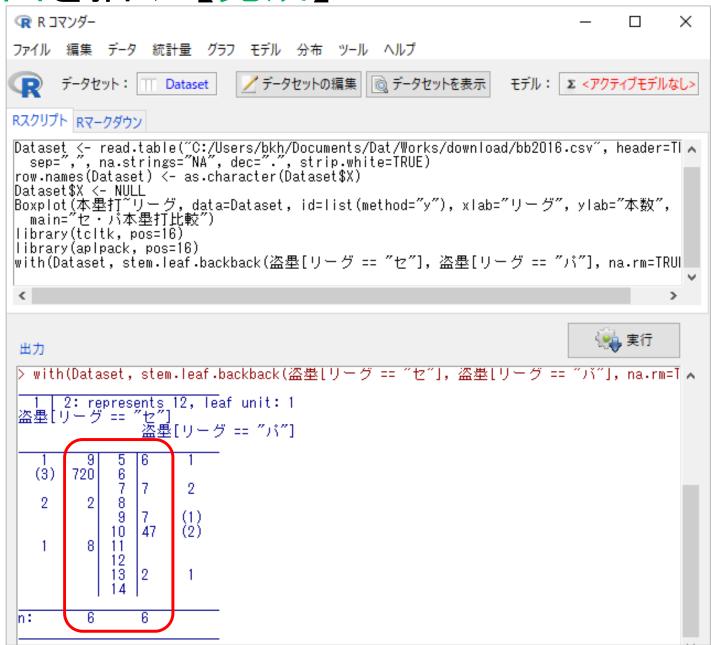
TRUE)


▶ [層別変数(1つ選択)]で[リーグ]を選択し[OK]

⑤ 箱ひげ図を描く【完成】

- ▶ 『箱ひげ図』の [オプション]タブで以下を設定
 - ▶ [ラベルを表示]に、ラベルをそれぞれ適切に設定
 - ▶ [X軸のラベル] = リーグ
 - ▶ [Y軸のラベル] = 本数
 - ▶ [グラフのタイトル] = セ・パ 本塁打比較

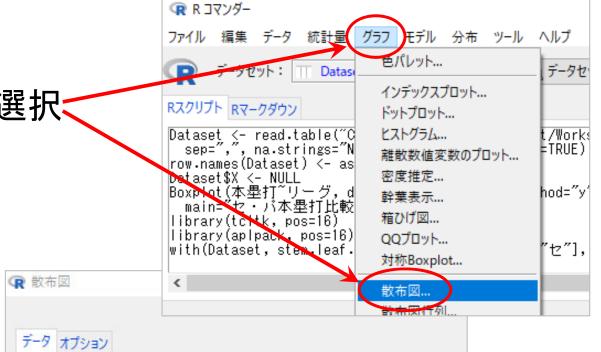

▶ 全て設定後, [OK]

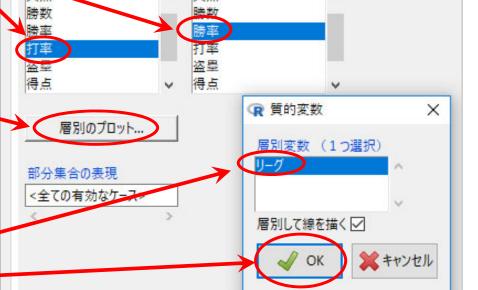

- ⑥ 幹葉図を描く
 - ▶ 「グラフ」ー「幹葉表示」を選択:

- ▶ 『幹葉表示』で以下を設定
 - ▶ [変数(1つ選択)]で[盗塁]選択
 - Plot back-to-back by..]クリック

- ▶ [層別変数(1つ選択)]で [リーグ] を選択し[OK]
- ▶ 全て設定後, [OK]

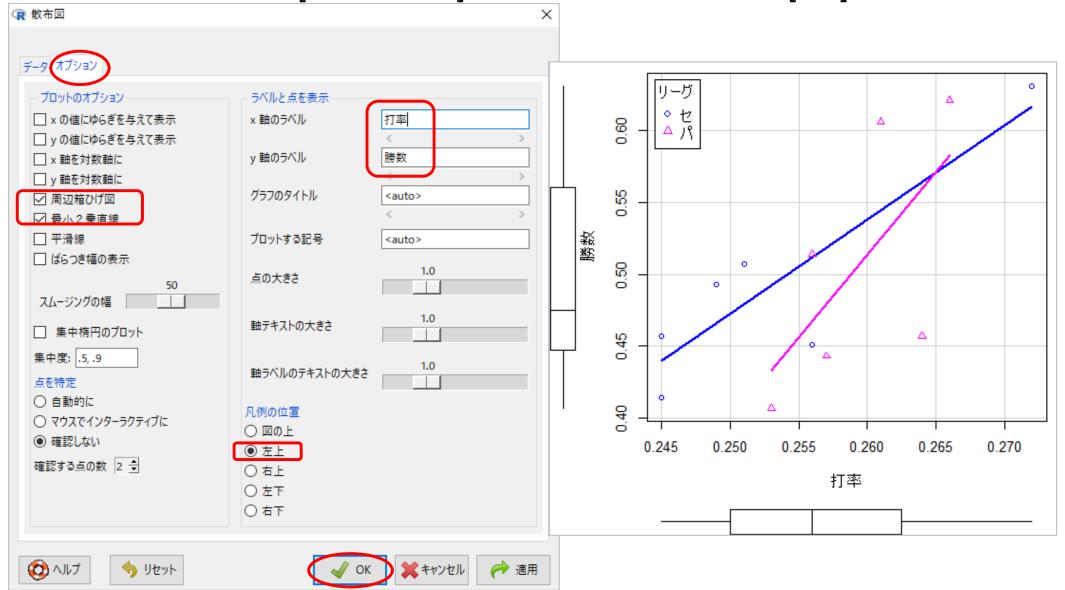
6 幹葉図を描く【完成】


x 変数 (1つ選択)


- ⑦ 散布図を描く
 - ▶ 「グラフ」ー「散布図」を選択

- ▶ 『散布図』で以下設定
 - ➤ [x変数] = 打率、
 - ▶ [y変数] = 勝率

▶ [層別のプロット]クリック・


▶ [層別変数(1つ選択)]で-[リーグ] を選択し [OK]-

y 変数 (1つ選択)

- ⑦ 散布図を描く【完成】
 - ▶ 『散布図』の[オプション]タブで以下を設定後、[OK]

データ オプション

層別のプロット...

部分集合の表現

<全ての有効なケース>

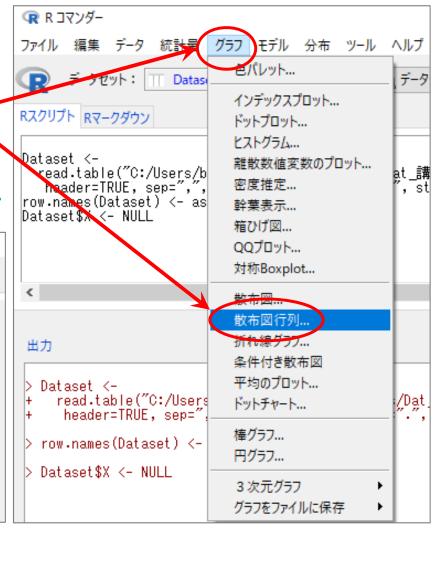
×

勝差

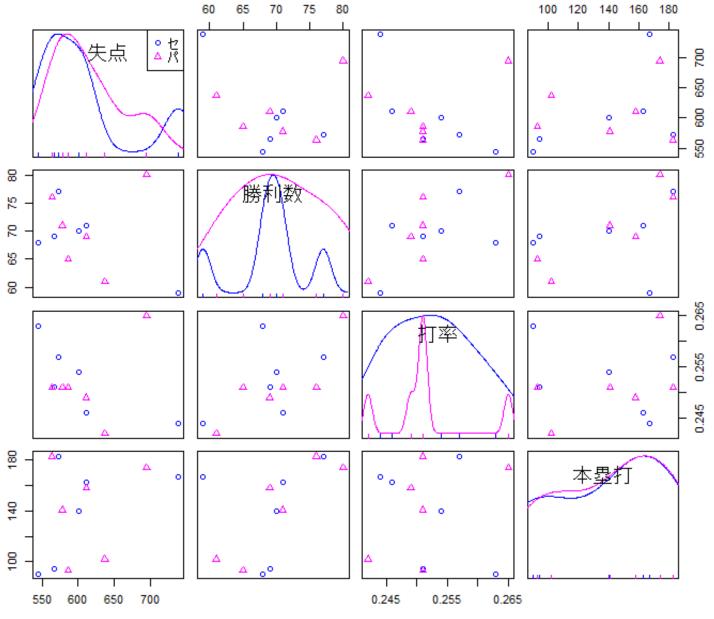
層別変数 (1つ選択)

層別して線を描く✓

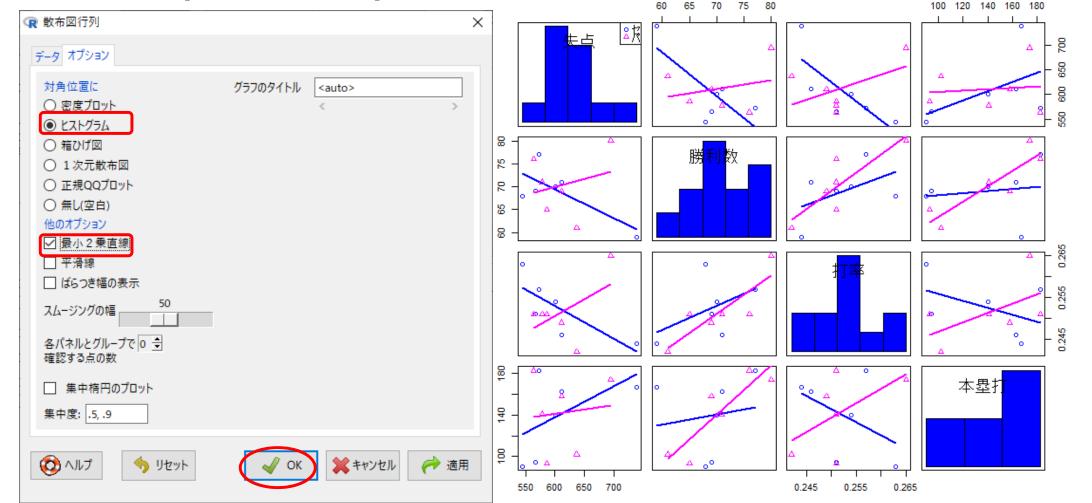
変数を選択(3つ以上)

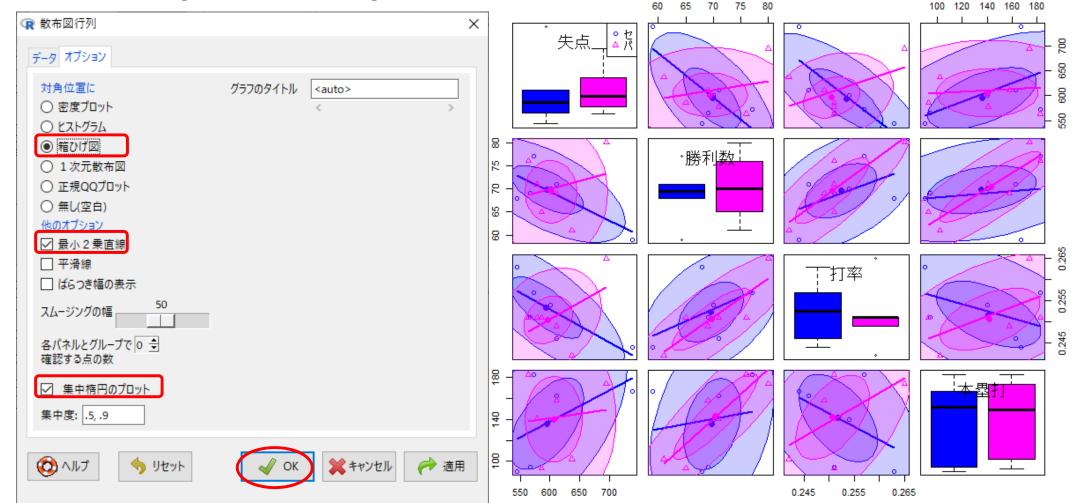

- ⑧ 散布図行列を描く
 - ▶ 「グラフ」ー「散布図行列」を選択
 - ▶ 『散布図行列』で以下を設定
 - [変数(3つ以上)]で[失点][勝利数][打率][本塁打] 4つを選択

(※複数選択は[Ctrl]キーを押しながら選択)


▶ [層別のプロット]クリック

[層別変数(1つ選択)]で[リーグ] 選択し[OK]


▶ [散布図行列]に 戻ったら [OK]


⑧ 散布図行列を描く1 【完成1】

- ⑧ 散布図行列を描く2 【完成2】
 - ▶ 再度「グラフ」ー「散布図行列」選択し、[オプション]タブで設定
 - ▶ [対角位置に]=ヒストグラム
 - ▶ [他のオプション]=最小2乗直線

- ⑧ 散布図行列を描く3 【完成3】
 - ▶ 再度「グラフ」ー「散布図行列」選択し、[オプション]タブで設定
 - ▶ [対角位置に]=箱ひげ図
 - ▶ [他のオプション]=最小2乗直線,集中楕円のプロット

2変数の相関(2)

尺度によって 分析法が変わ ることに注意

• 2変数 x, y 間の<u>相関</u>を調べる方法(図表と式)

<1	>	A	В	C	D	E	F	G	Η	I	J	尺度
	性別 x	男	男	女	男	男	男	女	女	男	女	質的
	嗜好 y	紅茶	緑茶	珈琲	珈琲	緑茶	珈琲	紅茶	珈琲	珈琲	紅茶	質的
						フロス	集計		連関係			
<2	>	A	В	C	D	E	F	G	Н	I	J	
	飲量x	15	32	16	30	50	12	14	24	18	19	量的
	嗜好 y	紅茶	緑茶	珈琲	珈琲	緑茶	珈琲	紅茶	珈琲	珈琲	紅茶	質的
						点グラ	ラフ		相関	比		
<3	>	A	В	C	D	Е	F	G	Н	Ι	J	
	身長 x	176	170	163	173	170	171	165	170	176	156	量的
	体重 y	61	73	54	65	67	62	51	57	77	43	量的
			相関係	系数								

2変数の関係

□ 2変数の関係3:x(量的)×y(量的)式

	A	В	C	D	E	F	G	Н	I	J	_
身長x	176	170	163	173	170	171	165	170	176	156	量的
体重y	61	73	54	65	67	62	51	57	77	43	量的

相関係数

□ ピアソンの積率相関係数 Pearson's product-moment correlation coefficient

$$r_{xy} = \frac{\text{cov}_{xy}}{S_x \cdot S_y}$$

$$\approx \frac{46}{5.848 \cdot 9.706}$$

$$\approx 0.81$$

$$cov_{xy} = \frac{(176-169)(61-61)+\dots+(156-169)(43-61)}{10} = 46$$

$$S_x = \sqrt{\frac{(176-169)^2 + \dots + (156-169)^2}{10}} \approx 5.848$$

$$(x \text{ or 標準偏差})$$

$$S_y = \sqrt{\frac{(61-61)^2 + \dots + (43-61)^2}{10}} \approx 9.706$$

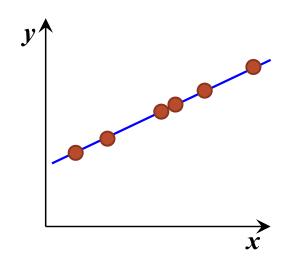
$$(y \text{ or 標準偏差})$$

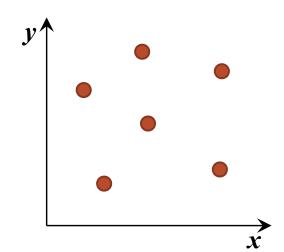
2変数の関係

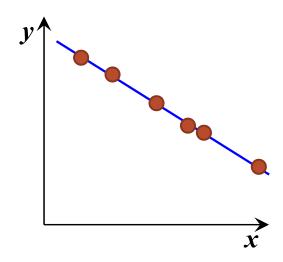
- □ 2変数の関係3: x(量的)×y(量的)式
 - □ ピアソンの積率相関係数 Pearson's product-moment correlation coefficient

$$r_{xy} = \frac{\text{cov}_{xy}}{S_x \cdot S_y} \left(-1 \le r_{xy} \le 1 \right)$$

$$r_{xy} = \frac{\text{cov}_{xy}}{S_x \cdot S_y} = 1$$


身長と体重は<u>正の相関</u>


$$r_{xy} = \frac{\text{cov}_{xy}}{S_x \cdot S_y} = 0$$


身長と体重は無相関

$$r_{xy} = \frac{\text{cov}_{xy}}{S_x \cdot S_y} = -1$$

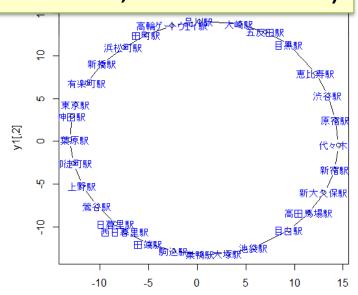
身長と体重は<u>負の相関</u>

参考文献

- ◆ 山本他『Rで学ぶデータサイエンス12統計データの視覚化』共立出版(2013)
- ◆ 奥村晴彦『Rで楽しむ統計』共立出版(2016)
- ◆ J. P. Lander 『みんなのR』マイナビ (2015)
- W. Chang 『Rグラフィックス クックブック』オライリー(2013)
- ◆ 青木繁伸『Rによる統計解析』オーム社(2009)
- ★ 荒木孝治『RとRコマンダーではじめる多変量解析』日科技連(2007)
- ◆ 金明哲『Rによるデータサイエンス』森北出版(2007)
- ◆ 新納浩幸『Rで学ぶクラスタ解析』オーム社(2007)

もつと知りたい人へ

- 関連する経営学科の授業
 - 「基礎統計」(1/2セメ)
 - 「基礎統計演習」(3/4セメ)
 - 「データ処理応用」(2/3セメ)
 - 「統計モデル分析」(5セメ)
 - 「ビッグデータ・AI演習」(6セメ)


- 多次元尺度法 multi-dimensional scaling
 - 類似度データから類似性が高いもの同士を近くに、低いもの同士を遠くに配置して描画する手法の1つ
- 描画用データファイルの準備
 - 類似度を表した行列形式のデータを csv ファイルにし、「マイドキュメント("K:/")」に保存

「yamaote.csv」... JR山手線30駅の駅間所要時間(分)データ

	東京駅	神田駅	秋葉原駅	御徒町駅	上野駅	鶯谷駅	日暮里駅	西日暮里駅	田端駅	駒込駅	巣鴨駅	大塚駅	池袋駅	
東京駅	0	1	3	5	7	9	11	12	14	16	18	20	22	
神田駅	1	0	2	4	6	8	10	11	13	15	17	19	21	
秋葉原駅	3	2	0	2	4	6	8	9	11	13	15	17	19	
御徒町駅	5	4	2	0	2	4	6	7	9	11	13	15	17	
上野駅	7	6	4	2	0	2	4	5	7	9	11	13	15	
鶯谷駅	9	8	6	4	2	0	2	3	5	7	9	11	13	
日暮里駅	11	10	8	6	4	2	0	1	3	5	7	9	11	•••
西日暮里駅	12	11	9	7	5	3	1	0	2	4	6	8	10	
田端駅	14	13	11	9	7	5	3	2	0	2	4	6	8	
駒込駅	16	15	13	11	9	7	5	4	2	0	2	4	6	
巣鴨駅	18	17	15	13	11	9	7	6	4	2	0	2	4	
大塚駅	20	19	17	15	13	11	9	8	6	4	2	0	2	
池袋駅	22	21	19	17	15	13	11	10	8	6	4	2	0	

:

- 多次元尺度法 multi-dimensional scaling で描画
 - 作業フォルダの設定(マイドキュメント("K:/")へ移動)
 - > setwd("K:/")
 - 作業フォルダの確認/位置取得 get working directory
 - > getwd()
 - 保存してある csvファイル (yamanote.csv) の読み込み
 - > y0 <- read.csv("K:/yamanote.csv", header=T, row.names=1)
 - (古典的)多次元尺度法で計算
 - > y1 <- cmdscale(y0)
 - 描画
 - > plot(y1, type="b")
 - > text(y1, names(y0), col="blue")

• csv ファイルをデータとして利用

- 「マイドキュメント(Y:)」に「R」フォルダをつくり中に保存

bb2018.csv

※)2018年プロ野球 セ・パ成績 (Yahoo Japan! Sports naviより)

	リーグ	グ 試合数 勝利数 関		敗戦数	引分数	勝率	得点	失点	本塁打	盗塁	打率	防御率
広島	セ	143	82	59	2	0.582	721	651	175	95	0.262	4.12
ヤクルト	セ	143	75	66	2	0.532	658	665	135	68	0.266	4.13
巨人	セ	143	67	71	5	0.486	625	575	152	61	0.257	3.79
DeNA	セ	143	67	74	2	0.475	572	642	181	71	0.25	4.18
中日	セ	143	63	78	2	0.447	598	654	97	61	0.265	4.36
阪神	セ	143	62	79	2	0.44	577	628	85	77	0.253	4.03
西武	パ	143	88	53	2	0.624	792	653	196	132	0.273	4.24
ソフトバンク	パ	143	82	60	1	0.577	685	579	202	80	0.266	3.9
日本ハム	パ	143	74	66	3	0.529	589	586	140	98	0.251	3.77
オリックス	パ	143	65	73	5	0.471	538	565	108	97	0.244	3.69
ロッテ	パ	143	59	81	3	0.421	534	628	78	124	0.247	4.04
楽天	パ	143	58	82	3	0.414	520	583	132	69	0.241	3.78

• ファイルの読込み

※1行目にheaderあり

※各行の名称は列1に

> dfbb <- read.csv("Y:/R/bb2018.csv", header=T, row.names=1)

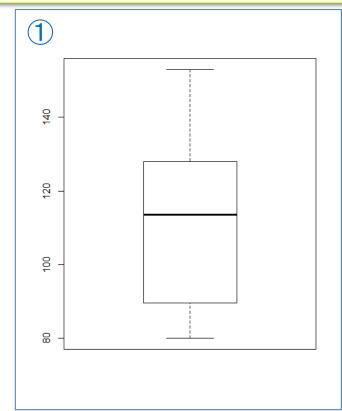
※ファイルのフルパス

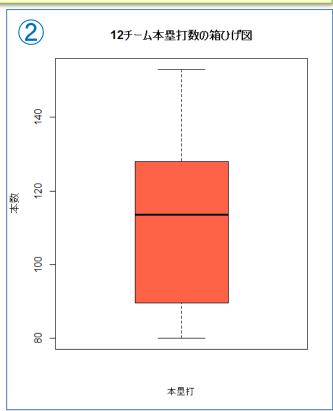
例)YドライブのRフォルダ内にあるbb2018.csvという名前のファイル

- ・読込データの確認
 - dfbbに代入したdata frame の中身を全て表示
 - > dfbb
 - dfbbに代入したdata frame の中身を一部(先頭)表示 > head(dfbb)
 - dfbbに代入したdata frame の中身を一部(後尾)表示 > tail(dfbb)
 - dfbbの項目名表示(header=Tで読んだデータ)
 - > names(dfbb)
 - dfbbのレコード名表示(row.names=1で指定した)
 - > row.names(dfbb)

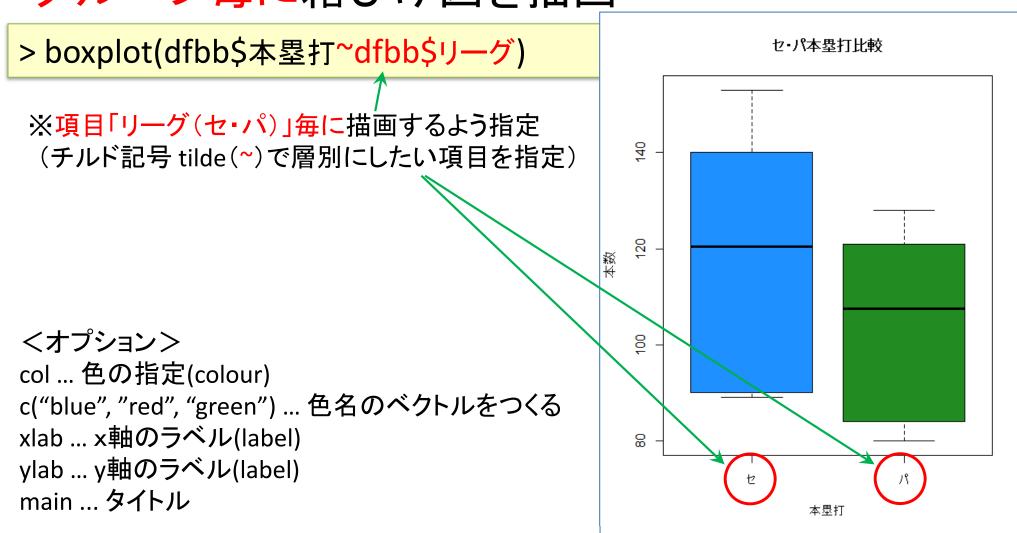
・箱ひげ図を描画

※dfbb\$本塁打 ... data.frameである dfbbの項目"本塁打"を箱ひげ図のデータとして使用


> boxplot(dfbb\$本塁打)



• オプションを指定し箱ひげ図を描画


> boxplot(dfbb\$本塁打, col="tomato", xlab="本塁打", ylab="本数", main="12チーム本塁打数の箱ひげ図")

<オプション> col … 色の指定(colour) xlab … x軸のラベル(label) ylab … y軸のラベル(label) main … タイトル

• グループ毎に箱ひげ図を描画

> boxplot(dfbb\$本塁打~dfbb\$リーグ, xlab="本塁打", ylab="本数", col=c("dodgerblue","forestgreen"), main="セ・パ本塁打比較")

• 幹葉図(stem-and-leaf plot)を描画

```
> stem(dfbb$本塁打)
```

幹葉図を描画(オプション scale=2)

> stem(dfbb\$本塁打, 2)

```
The decimal point is 1 digit(s) to the right of the |
8 | 049
9 | 0
10 | 1
11 | 34
12 | 188
13 |
14 | 0
15 | 3
```

- csv ファイルをデータとして利用
 - 「マイドキュメント(Y:)」に「R」フォルダをつくり中に保存

bi2016.csv

氏名		チーム	リーグ	打率	試合数	打席数	打数	安打	二塁打	三塁打	本塁打	塁打数	打点	得点	三振	四球	死球	犠打	犠飛	盗塁	出塁率	長打率	得点圏	併殺	失策
坂本	勇人	E	セ	0.344	137	576	488	168	28	3	23	271	75	96	67	81	0	1	6	13	0.433	0.555	0.339	6	16
鈴木	誠也	広	セ	0.335	129	528	466	156	26	8	29	285	95	76	79	53	3	3	3	16	0.404	0.612	0.346	10	2
筒香	嘉智	D	セ	0.322	133	561	469	151	28	4	44	319	110	89	105	87	3	0	2	0	0.43	0.68	0.393	6	2
菊池	涼介	広	セ	0.315	141	640	574	181	22	3	13	248	56	92	106	40	0	23	3	13	0.358	0.432	0.343	3	4
福留	孝介	神	セ	0.311	131	523	453	141	25	3	11	205	59	52	78	61	3	0	6	0	0.392	0.453	0.31	6	1
山田	哲人	ヤ	セ	0.304	133	590	481	146	26	3	38	292	102	102	101	97	8	0	4	30	0.425	0.607	0.299	16	5
村田	修一	巨	セ	0.3024	143	576	529	160	32	0	25	267	81	58	83	38	5	2	2	1	0.354	0.505	0.305	21	15
川端	慎吾	ヤ	セ	0.3023	103	458	420	127	22	1	1	154	32	48	31	34	1	1	2	3	0.354	0.367	0.301	13	5
新井	貴浩	広	セ	0.3	132	513	454	136	23	2	19	220	101	66	101	54	1	0	4	0	0.372	0.485	0.323	12	5

※)2016年プロ野球個人成績(Yahoo Japan! Sports naviより)

• ファイル読込み

> dfbi <- read.csv("Y:/R/bi2016.csv", header=T, row.names=1)

(演習)

箱ひげ図で表示したい項目を1つ選び(例:打率,安打,本塁打,打点,得点,etc.),12 チーム毎の箱ひげ図を描画せよ.

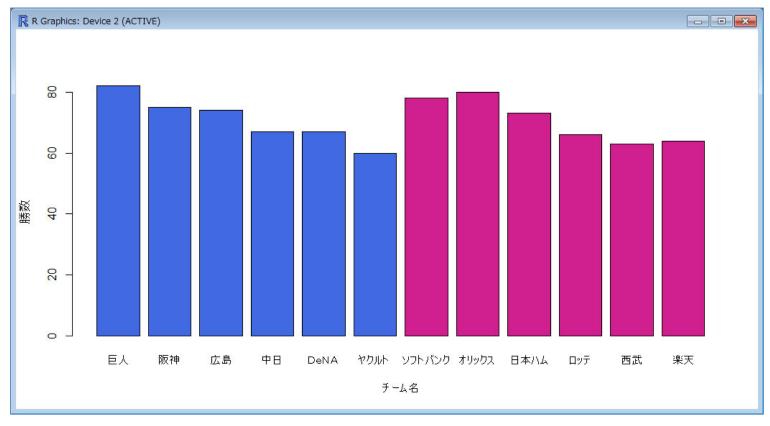
さらに, 可能なら, 色, x軸ラベル, y軸ラベル, タイトルを適切に設定してみよう

その他のグラフ作成例棒グラフ散布図

※これらのグラフを作成したい時は、Excelを使った方が良い

- 棒グラフを作成 ※色指定用のベクトル生成. "royalblue"を6回 repeat し, "violetred"を6回repeat したベクトルたつくはった。」 "violetred"を6回repeat したベクトルをつくり cc に代入
 - > cc <- c(rep("royalblue",6), rep("violetred",6))
 - > barplot(dfbb\$勝数, names.arg=row.names(dfbb), col=cc, xlab=" チーム名", ylab="勝数")

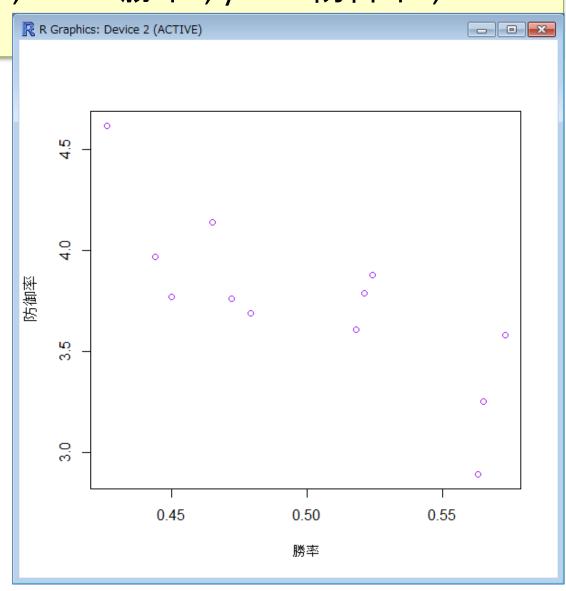
dfbb\$勝数 ... data.frameである dfbb の項目"勝数"を棒グラフのデータとして使用 names.arg ... それぞれの棒に対応する名称


col ... 棒の色指定 xlab ... x軸のラベル ylab ... y軸のラベル

> colors()

※Rで使える657色 の名称リスト表示

• 散布図を作成(1)


> plot(dfbb\$勝率, dfbb\$防御率, xlab="勝率", ylab="防御率",

col="purple")

x軸を dfbb\$勝率 y軸を dfbb\$防御率 のデータを用い散布図を作成

xlab ... x軸ラベルの指定 ylab ... y軸ラベルの指定 col ... プロットする点の色指定

dfbb\$勝率 は dfbb[,6] でもよい dfbb\$防御率 は dfbb[,12] でもよい

• 散布図を作成(2)

> plot(dfbb[,6], dfbb[,12], xlab="勝率", ylab="防御率", type="b")

```
x軸を dfbb[,6]="勝率"
y軸を dfbb[,12]="防御率"
のデータを用い散布図を作成
```

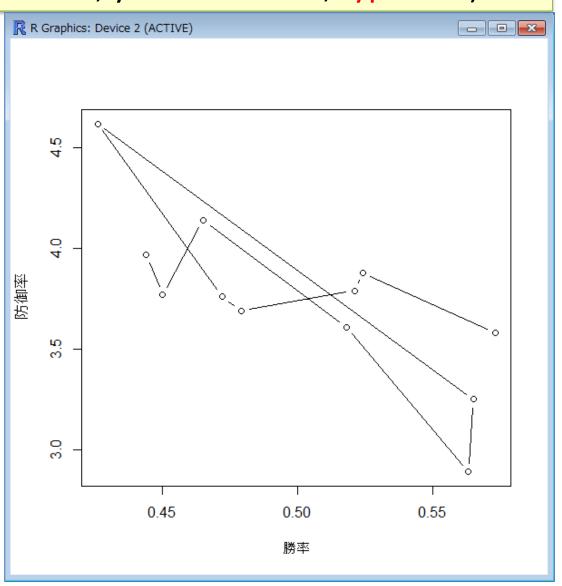
```
xlab ... x軸ラベルの指定
ylab ... y軸ラベルの指定
```

type ... 描画点の種類

"p" ... points 点 (default)

"l" ... lines 線分

"b" ... both点と線分 両方


"c" ... "b" から点を抜いたもの

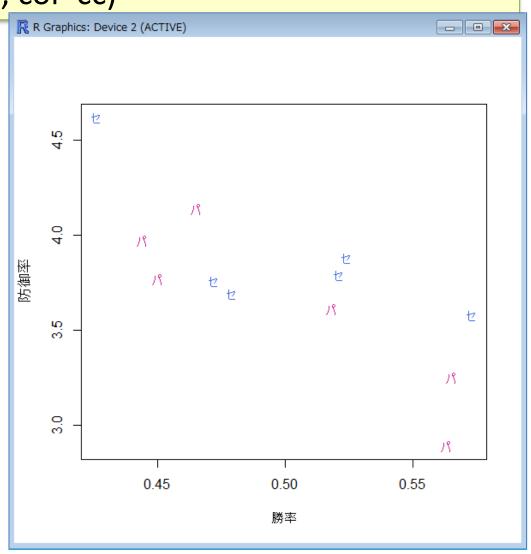
"o" ... overplotted

"h" ... histogram

"s" ... stair steps

"n" ... no plotting 点をかかない

• 散布図を作成(3)

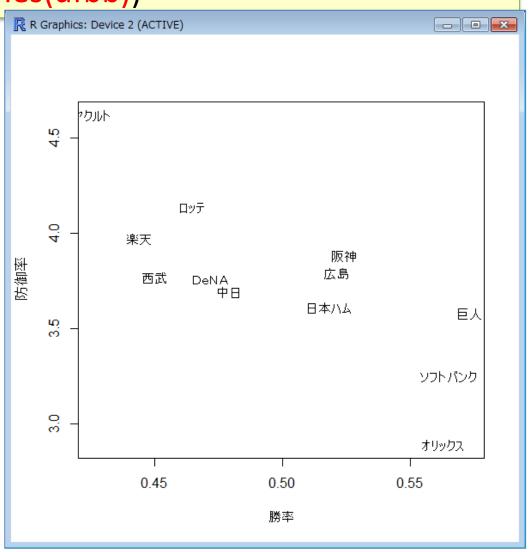

※プロットはせずに、枠・軸だけを描画

- > plot(dfbb[,6], dfbb[,12], xlab="勝率", ylab="防御率", type="n")
- > text(dfbb[,6], dfbb[,12], dfbb[,1], col=cc)

※リーグ名称をプロット点として描く (data.frame である dfbb の1列目に リーグ名を入れたことを思いだそう!)

※col=cc は色設定を ccにするということ (cc はリーグ毎の色設定用ベクトル として作ったことを思いだそう!)

dfbb[,1] は dfbb\$リーグ でもよい dfbb[,6] は dfbb\$勝率 でもよい dfbb[,12] は dfbb\$防御率 でもよい


• 散布図を作成(4)

※プロットはせずに、枠・軸だけを描画

- > plot(dfbb[,6], dfbb[,12], xlab="勝率", ylab="防御率", type="n")
- > text(dfbb[,6], dfbb[,12], row.names(dfbb))

※チーム名称をプロット点としてかく (read.csvでcsvファイルを読み込んだ時に, row.namesとして1列目のチーム名称を指定したことを思いだそう!)

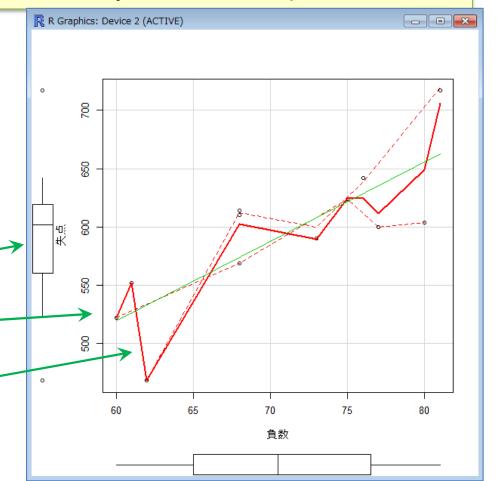
dfbb[,6] は dfbb\$勝率 でもよい dfbb[,12] は dfbb\$防御率 でもよい

【参考】 Rでデータの視覚化

箱ひげ図と散布図を作成(1)-scatterplot()-

> install.packages("car") ***scatterplot() の使用準備 package "car"のインストール package "car"の読込み

> scatterplot(dfbb[,4], dfbb[,8], xlab="負数", ylab="失点")


x軸を dfbb[,4]="負数" y軸を dfbb[,8]="失点" のデータを用い散布図を作成

xlab ... x軸ラベルの指定 ylab ... y軸ラベルの指定

※それぞれの軸に、それぞれのデータの箱ひげ図が描かれる

※緑線は回帰直線 regression line

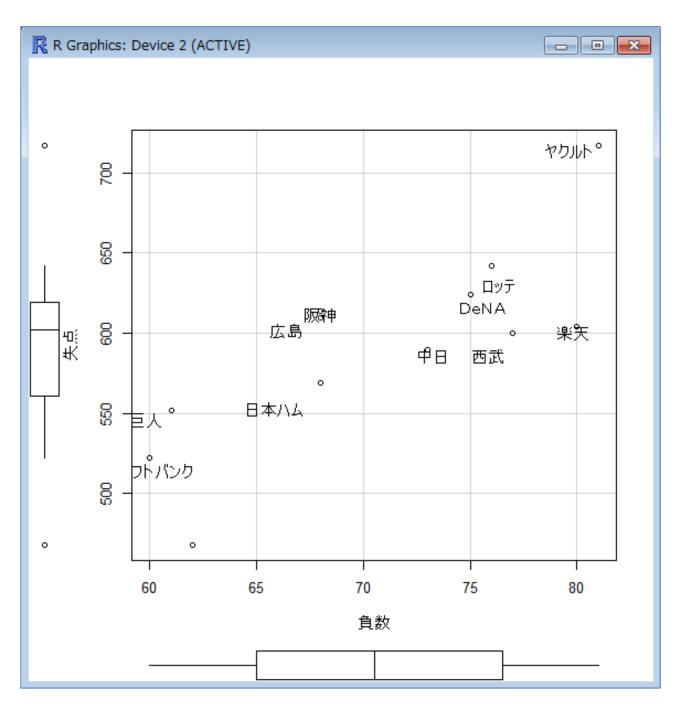
※赤線・赤点線は平滑化線とspan

【参考】 Rでデータの視覚化

- 箱ひげ図と散布図を作成(2)-scatterplot()-
 - > install.packages("sp")
 - > install.packages("maptools")
 - > library(sp)
 - > library(maptools)

- ※pointLabel() の使用準備 - packages "sp","maptools"のインストール
- _ packages "sp", "maptools"の読込み (注:必ず sp → maptools の順!)

- 点とチーム名を両方プロットする


- > scatterplot(dfbb[,4], dfbb[,8], xlab="負数", ylab="失点", reg.line=F, smooth=F)
- > pointLabel(x=dfbb[,4], y=dfbb[,8], labels=row.names(dfbb))
- ※平滑化線は描かない

※回帰直線 regression line は描かない(FはFalseの意)

※散布図の点のラベルを row.names(dfbb)として書く

【参考】

Rでデータの視覚化

