問題解決技法入門

3. Data Analysis 3. クラスター分析 Cluster Analysis

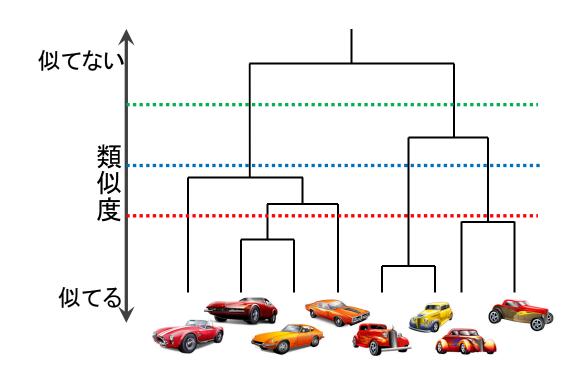
クラスター分析とは

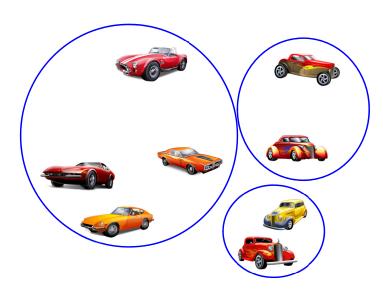
クラスタ分析とは?

法の総称

複数の対象(もの,変数など)を,その
 属性によって類似度(similarity)をはかり,均質な集団(cluster)に分類する方

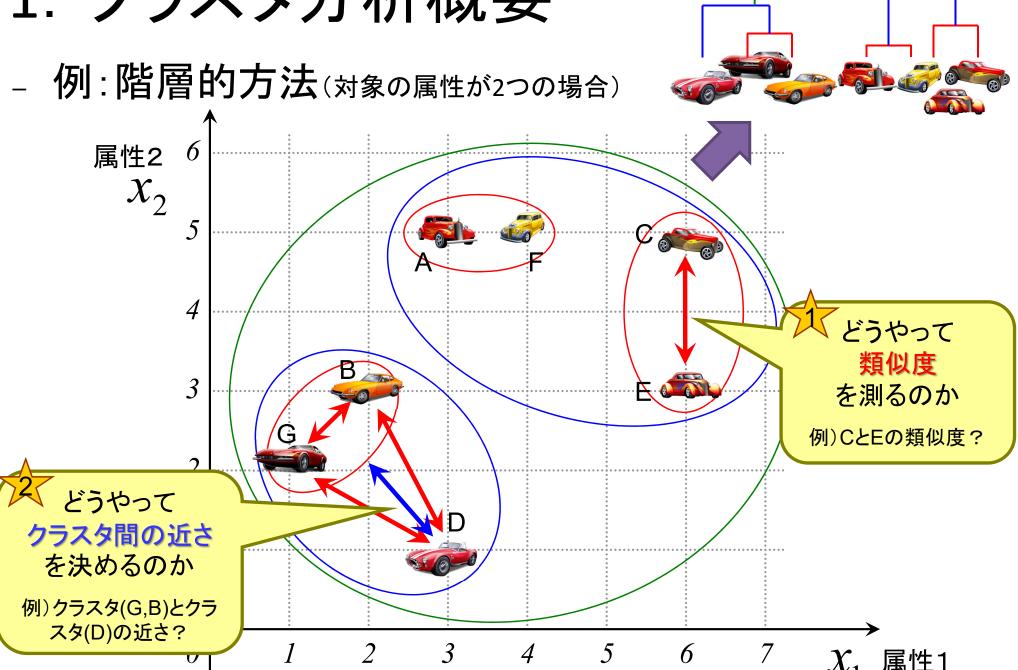
どれとどれが似てる?

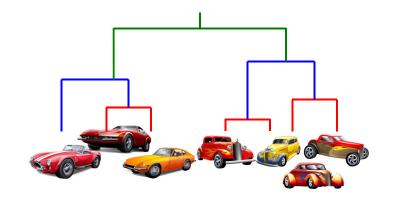

(同じクラスター?)



クラスター分析とは

- ・ クラスタ分析の種類
 - 階層的方法
 - 樹形図(デンドログラム)を作成
 - 目的により高さを決めてクラス タリング


- 非階層的方法
 - 予めクラスタ数を決めて (or 決まっていて)クラスタリングを行う


例:3つのクラスタに分類

1. クラスタ分析概要

1. クラスタ分析概要

- どうやって<u>類似度を測る</u>か?

		3	1	2	3	4	6	6
x_1	x_2	1	2	3	5	5	5	3
3	1							
1	2							
2	3							
3	5							
4	5							
6	5							
6	3							

<u>距離【間隔尺度】</u>

- ユークリッド距離
- ユークリッド平方距離
- 重み付きユークリッド距離
- マンハッタン距離
- ミンコフスキー距離
- マハラノビス汎距離

相関【間隔尺度】

- Pearsonの積率相関係数
- ベクトル内積

相関【順序尺度】

- Spearmanの順位相関係数
- Kendallの順位相関係数

類似度は尺度により距離や相関で測る

(距離:近いほうが類似) (相関:高いほうが類似)

• 距離【名義尺度 [0,1]】

- 類似比
- 一致係数
- Russel-Rao係数
- Rogers-Tanimoto係数
- Hamann係数
- ファイ係数

• 変量間類似度【名義尺度】

- 平均平方根一致係数
- グッドマン・クラスカルのλ

• データと尺度

夕羔尸由

比率尺度 比率尺度

間隔尺度 間隔尺度 間隔尺度

順序尺度 順序尺度 順序尺度

夕羔尸由

順序尺度

1 我八汉	13/12	1 我八汉	14/1/2		14人人	11 投入人及	
学籍番号	氏名	性別	生年月日	身長	体重	問題発見技法成績	•••
1	文教太郎	男	1987.5.6	175cm	69kg	В	•••
2	湘南花子	女	1988.1.4	163cm	48kg	AA	•••
3	:	. :	:	:	:	:	

比率尺度

比に意味がある(絶対原点が存在する)

例)身長 180cmのAさんは息子(100cm)の1.8倍背が高い

量的データ (数値データ)

間隔尺度

差に意味がある

例) 温度 気温20℃より30℃の方が10℃高い

順序尺度

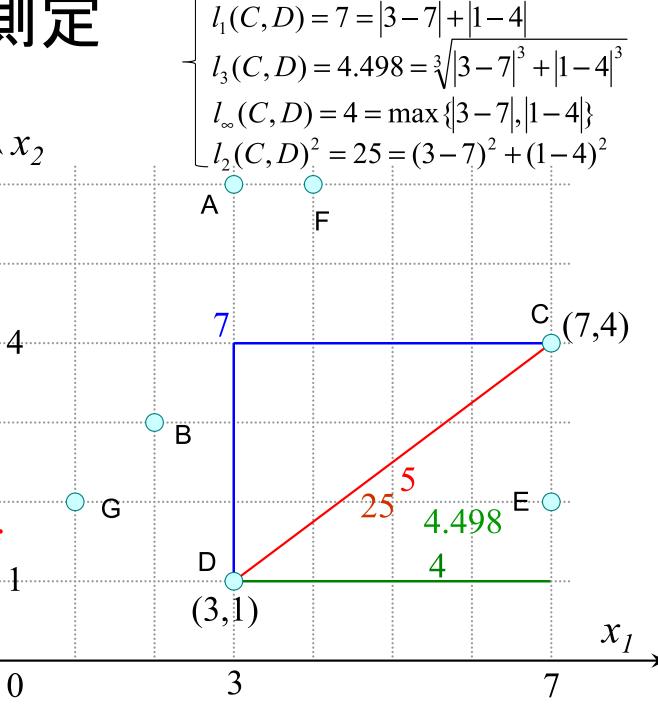
順序関係がある(順序に意味がある)

例) 成績評価 (A>B>C>D)

質的データ - (カテゴリデータ)

名義尺度

単なる分類, 区別ができる 例) 名前, 性別 名義尺度

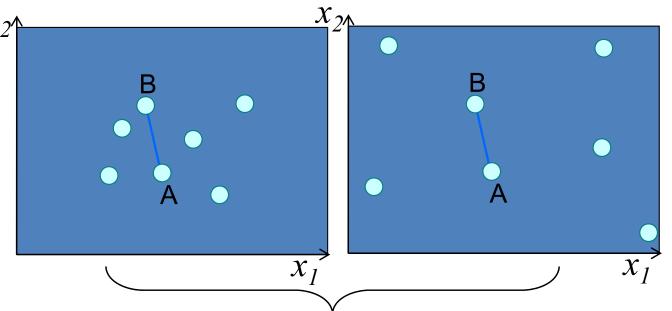

順序尺度

比率尺度

- 個体間類似度
 - ユークリッド距離(cf. l_2 -ノルム)
 - マンハッタン距離 (cf. l₁-ノルム)
 - ミンコフスキ一距離(cf. l_p -ノルム)(cf. l_∞ -ノルム)
 - マハラノビス汎距離
 - ユークリッド平方距離

クラスター分析で よく使われる

(注:各ノルムとは2変量の 差ベクトルに対するノルム)



 $l_2(C,D) = 5 = \sqrt{(3-7)^2 + (1-4)^2}$

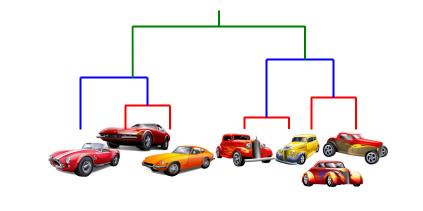
個体間類似度

- ユークリッド距離 $(cf. l_2-Jルム)$
- マンハッタン距離 $(cf. l_1-Jルム)$
- ミンコフスキー距離 $(cf. l_p$ -ノルム) $(cf. l_{\infty}$ -ノルム)

- マハラノビス汎距離

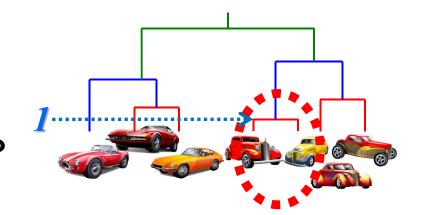
左側の対象内での、A-B間距離と 右側の対象内でのA-B間距離が 異なる!(ユークリッド距離などでは同じ)

$$D \equiv \sqrt{\frac{u_1^2 + u_2^2 - 2\rho u_1 u_2}{1 - \rho^2}}$$

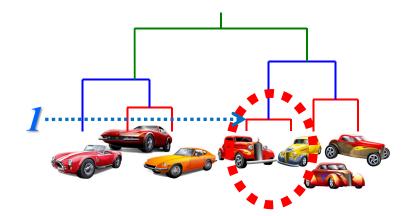

ハラノビス汎距離
2変量版
$$x=(x_1,x_2)$$
 $D \equiv \sqrt{\frac{u_1^2 + u_2^2 - 2\rho u_1 u_2}{1-\rho^2}}$ u_1, u_2 は x_1, x_2 の標準化変量で、 $u_1 = \frac{x_1 - \mu_1}{\sigma_2}, u_2 = \frac{x_2 - \mu_2}{\sigma_2}$ $u_1 = \frac{x_1 - \mu_1}{\sigma_2}, u_2 = \frac{x_2 - \mu_2}{\sigma_2}$ $u_1 = \frac{x_1 - \mu_1}{\sigma_2}, u_2 = \frac{x_2 - \mu_2}{\sigma_2}$ σ_2 σ_2 σ_2 σ_3 はそれぞれ σ_3 なそれぞれ σ_3 なるれぞれ σ_3 なるれぞれ σ_3 の標準偏差 σ_3 の相関係数

多変量版 $x=(x_1,...,x_m)$

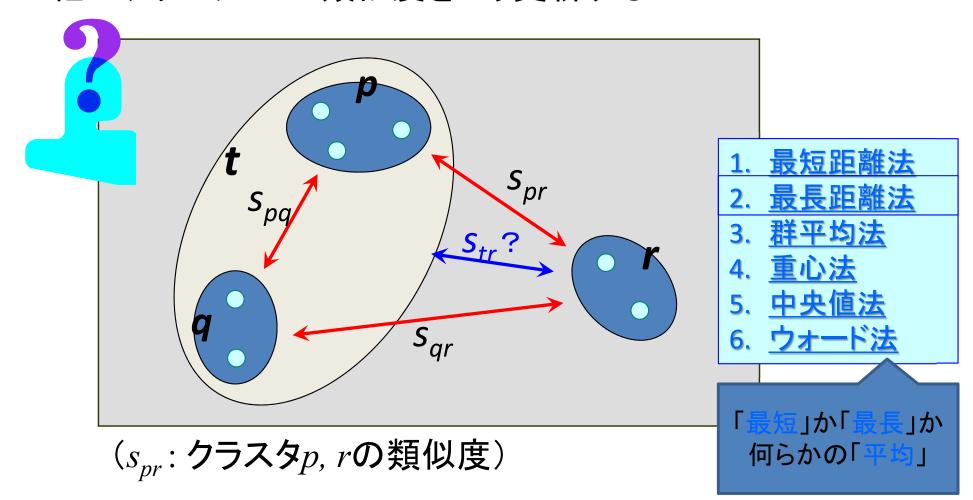
$$D \equiv (x_p - x_q)^T \Sigma^{-1} (x_p - x_q)$$


 Σ は x_p, x_q の分散共分散行列

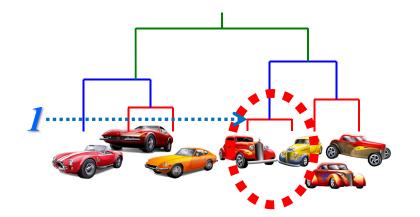
- どうやって<u>類似度を測る</u>か?
 - ・ 例:ユークリッド平方距離


			3	1	2	3	4	6	6
	x_1	x_2	1	2	3	5	5	5	3
	3	1		5	5	16	17	25	13
	1	2			2	<i>13</i>	18	34	26
	2	3				5	8	20	16
	3	5					1	9	13
	4	5						4	8
8	6	5							4
	6	3							

- どうやって<u>類似度を更新する</u>か?

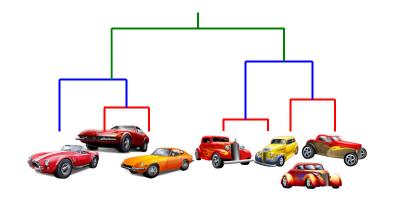

								1	
			3	1	2	3	4	6	6
	x_1	x_2	1	2	3	5	5	5	3
	3	1		5	5	16	<i>17</i>	25	13
	1	2			2	<i>13</i>	18	34	26
	2	3				5	8	20	16
	3	5					1	9	13
	4	5						4	8
8	6	5							4
	6	3							

- どうやって<u>類似度を更新する</u>か?

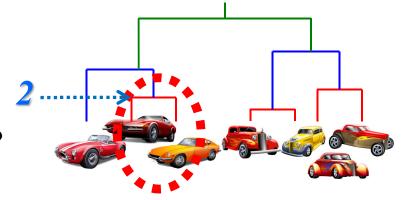


							000	
			3	1	2	3,4	6	6
	x_1	x_2	1	2	3	5,5	5	3
	3	1		5	5	16,17	25	13
	1	2			2	13,18	34	26
8	2	3				5,8	20	16
	3,4	5,5				1	9,4	13,8
	6	5						4
	6	3						

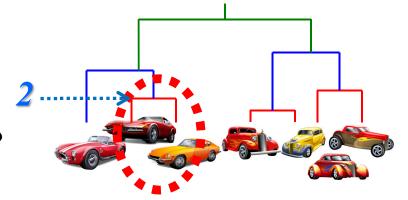
- 新たなクラスタ生成時の<u>類似度の更新方法</u>
 - クラスタp, クラスタq が一つのクラスタt になる場合,他のクラスタr との類似度をどう更新する?

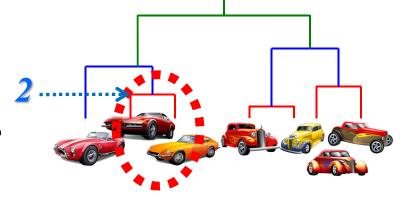


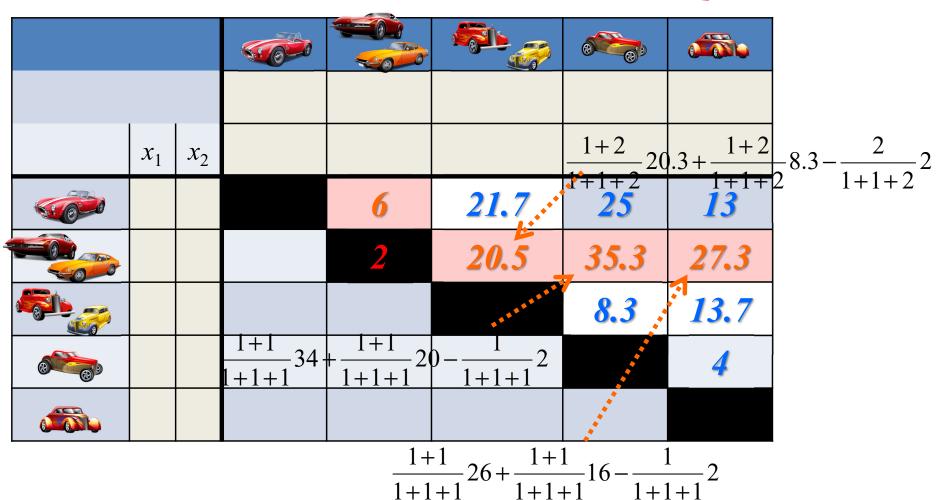
- どうやって<u>類似度を更新する</u>か?

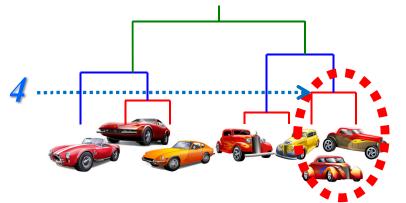


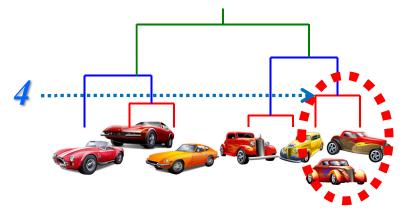
							000	
			3	1	2	3:4	6	6
	x_1	x_2	1	2	3	5:5	5	3
	3	1		5	5	16:17	25	13
	1	2			2	13:18	34	26
	2	3				5:8	20	16
	3:4	5:5				1	9:4	13:8
000	6	5						4
	6	3						

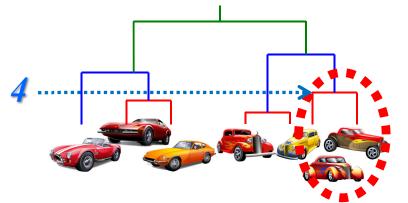

- どうやって<u>類似度を更新する</u>か?


			3	1	2	3:4	1+1	$6 + \frac{1+1}{1+1}$	$\frac{1}{1}$ 17 - $\frac{1}{1}$ 1
	x_1	x_2	1	2	3	5:5	$\frac{1}{1}$	$\frac{1+1+1}{1+1}$	$\frac{1+1}{1+1}$ 18- $\frac{1}{1}$ 1
	3	1		5	5	21.7	··25	13	1+1+1 1+1+1
	1	2			2	20.3	34	26	
000	2	3				8.3	20	16	
	3:4	5:5	+1 5+	1+1	8-1	1	8.3	13.7	
	6	5 ¹	1+1	1+1+1	1+1	+1	.7	4	
	6	3	$\frac{1+}{1+1}$	 9+-	$\frac{1+1}{+1+1}$	$-\frac{1}{1+1+1}$ 1			

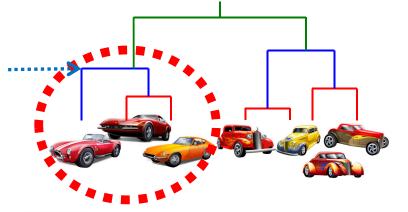



	x_1	x_2					
			5	5	21.7	25	13
				2	20.3	34	26
8 0					8.3	20	16
						8.3	13.7
6							4

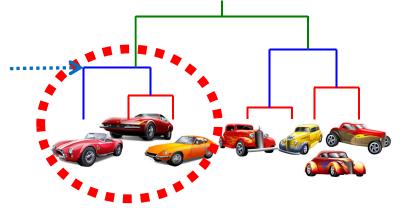

					8	
	$ x_1 $	x_2				
			5:5	21.7	25	13
			2	20.3:8.3	34:20	26:16
					8.3	13.7
6						4



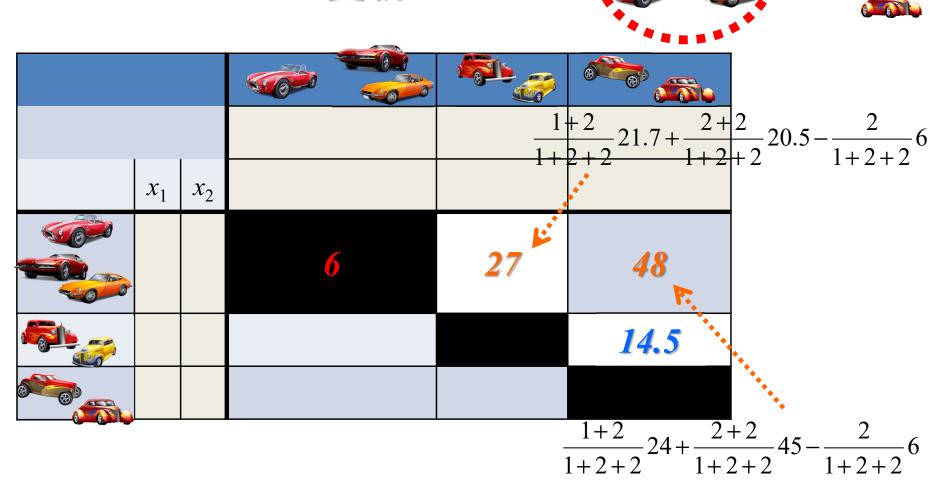
					8	
	$ x_1 $	x_2				
			6	21.7	<i>25</i>	13
				20.5	35.3	27.3
					8.3	13.7
8						4

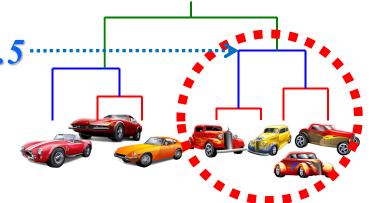


x	$x_1 \mid x_2 \mid$			
		6	21.7	25:13
			20.5	35.3:27.3
				8.3:13.7
				4

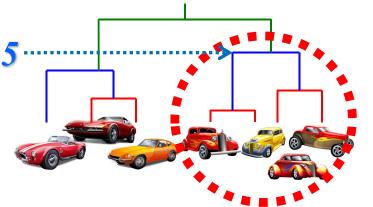


_					
	x_1	x_2			
			6	21.7	24
-				20.5	45
					14.5
G					4

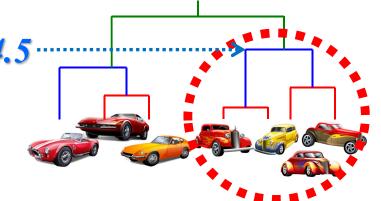

$$\frac{1+2}{1+1+2}$$
8.3 + $\frac{1+2}{1+1+2}$ 13.7 - $\frac{2}{1+1+2}$ 4



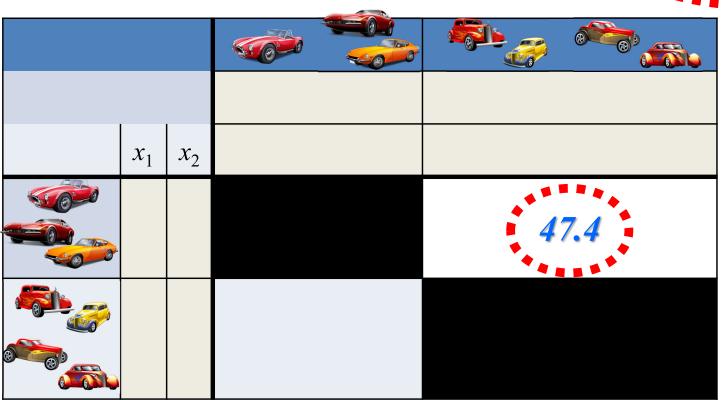
x_1	$_1 \mid x_2 \mid$			
		6	21.7	24
			20.5	45
				14.5

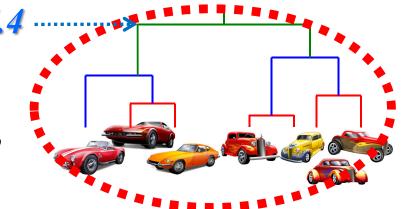


	x_1	x_2			
			6	21.7	24 45
			U	20.5	45
					14.5
6					



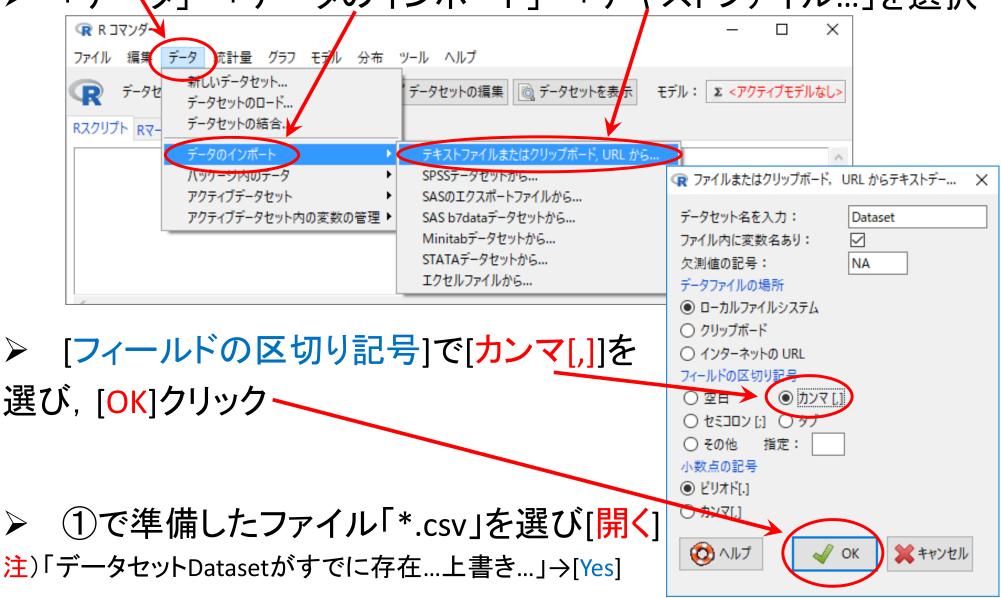
	_			
x_1	x_2			
			27	48
				14.5


x_1	x_2			
			4	27 48
			1	4. 5

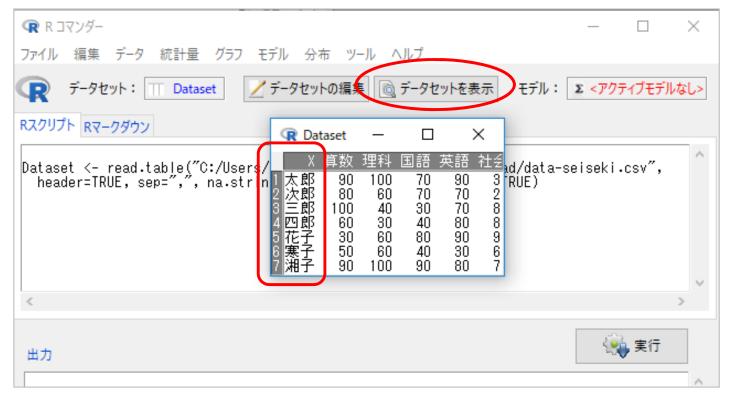

3. クラスタ化の方法 14.5

x_1	x_2			
			4	7.4
			14	4.5

$$\frac{2+3}{2+2+3}$$
27 + $\frac{2+3}{2+2+3}$ 48 - $\frac{3}{2+2+3}$ 14.5

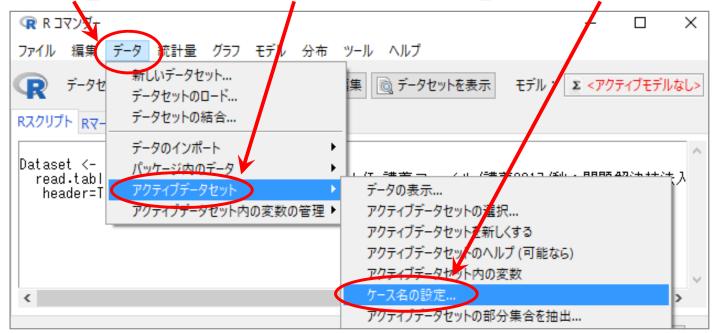

① データの準備: csv ファイル

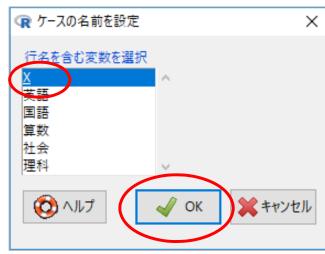
	算数	理科	国語	英語	社会
太郎	90	100	70	90	30
次郎	80	60	70	70	20
三郎	100	40	30	70	80
四郎	60	30	40	80	80
花子	30	60	80	90	90
寒子	50	60	40	30	60
湘子	90	100	90	80	70


data-seiseki.csv

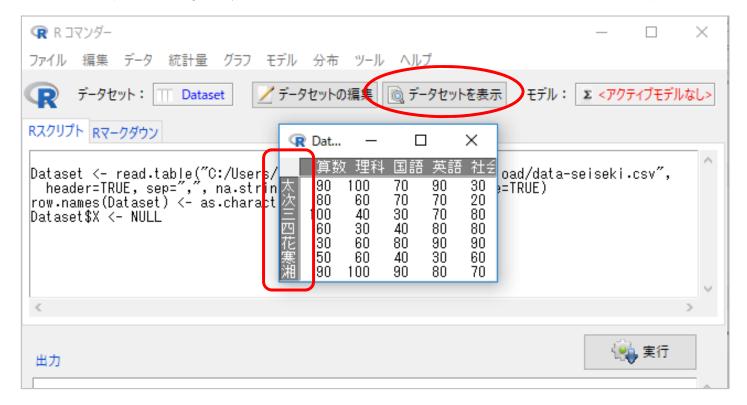
- ② Rの起動: 「R x64 X.X.X」を選択
 - 注) x64 = 64bit用のプログラム(アプリ), X.X.X = Rのバージョン
 - 注)32bit PCの場合は,「R i386 X.X.X」を選択
 - 注) 起動すると「R Console」が開く、コマンドプロンプト(>)で「library(Rcmdr)」と打ち[Enter] → R commander が起動

- ③ データの読込
 - 「データ」ー「データのインポート」ー「テキストファイル…」を選択


- ③ データの読込(読み込んだファイルの確認)
 - - ▶ 注1)氏名の項目名が「X」であることを確認(もとのファイルに項目名がないデータは自動的に「X」となる)
 - 注2)ケース名(左端)が通し番号(1,2,...,7)となっていることを確認

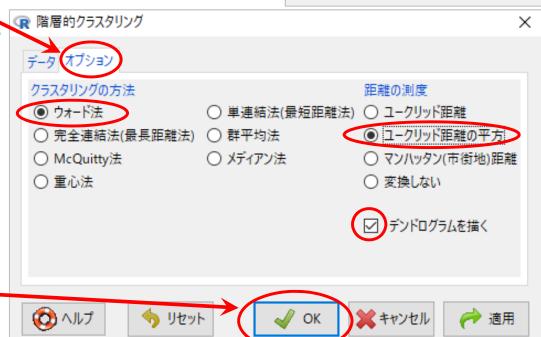

▶ 注3)確認後は、必ず「Dataset」の「×」をクリックして「閉じる」こと

④ データにケース名を設定する

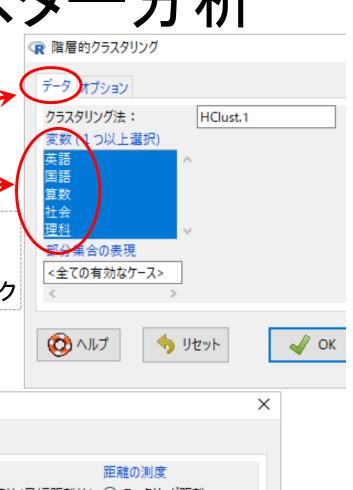

「データ」ー「アクティブデータセット」ー「ケース名の設定」選択

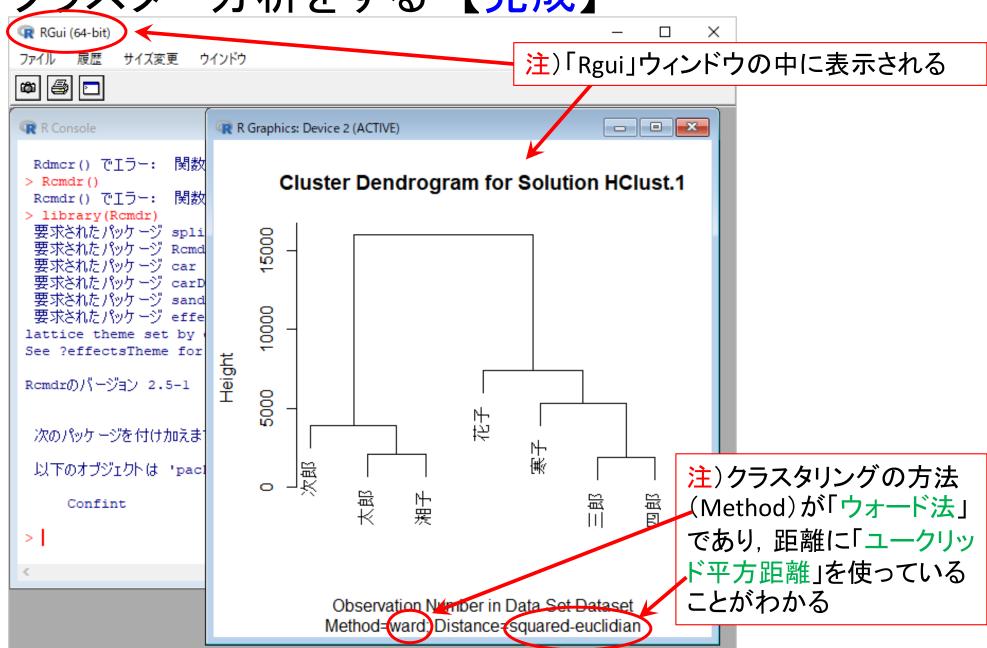
➤ [行名を含む変数を選択]で[X]を選び[OK]

- ④ データにケース名を設定する(設定確認)
 - ▶ [データセットを表示]ボタンをクリックし内容を確認
 - ▶ 注1)指定した変数がケース名になっていることを確認

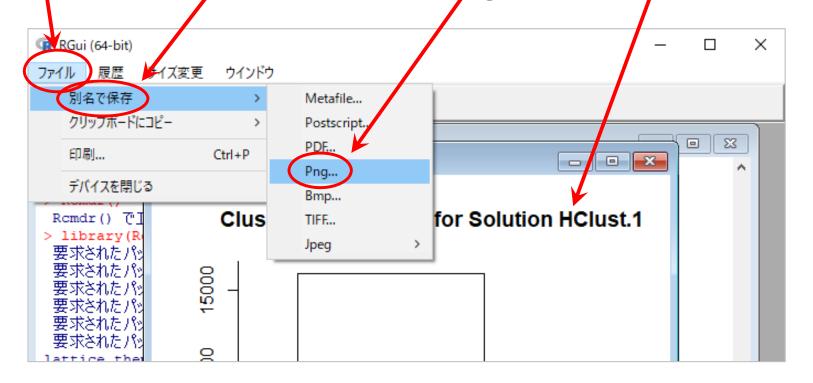


▶ 注2)確認後は、必ず「Dataset」の「×」をクリックして「閉じる」こと


- ⑤ クラスター分析をする
 - ➤ 「統計量」ー「次元解析」ー「クラスター分析」ー「階層的クラスター分析」」を選択


- ⑤ クラスター分析をする
 - ▶ 『データ』タブで以下を設定
 - ▶ [変数(1つ以上選択)]で全科目を選択
 - 注)複数の変数を選択する方法は以下のどちらかを実施
 - 1. [Ctrl]キーを押しっぱなしで、変数を1つずつクリック
 - 2. 1つめをクリック. [Shift]キーを押しながら最後をクリック
 - ▶ 『オプション』タブで以下を設定
 - ▶ ウォード法
 - ▶ ユークリッド距離の平方
 - ▶ ✓ デンドログラムを描く

▶ 全て設定後[<mark>OK</mark>]


5 クラスター分析をする【完成】

4. R commanderでクラスター分析

⑥ デンドログラム(樹形図)の保存

➤ デンドログラムのウィンドウを一番手前に表示した状態で、「ファイル」ー「別名で保存」ー「Png...」を選択/

▶ 名前をつけて保存する

5. クラスター分析実施上の注意点

- ・ クラスター分析の長所
 - 探索的手法なので、データ構造を事前に知らなくてよい
 - あらゆる種類のデータに適用可能:数値・カテゴリー
 - 適用が簡単
- クラスター分析の短所
 - どんな属性値を選んだらいいのか?

迷ったら<u>とりあえず</u> 「**ユークリッド平方距離**」 で

- どの類似度(距離)測定法を選んだらいいのか?
- どのクラスタ化更新法を選んだらいいのか?
- データのスケーリング
- 結果の解釈が困難な可能性がある

迷ったら<u>とりあえず</u> 「**ウォード法**」 で

参考文献

- ◆ 田中豊・脇本和昌『多変量統計解析法』現代数学社(1983)
- ◆ 河口至商『多変量解析入門Ⅱ』森北出版(1978,2005)
- ◆ 青木繁伸『Rによる統計解析』オーム社(2009)
- ★ 荒木孝治『RとRコマンダーではじめる多変量解析』日科技連(2007)
- ◆ 金明哲『Rによるデータサイエンス』森北出版(2007)
- ◆ 新納浩幸『Rで学ぶクラスタ解析』オーム社(2007)

もつと知りたい人へ

- 関連する経営学科の授業
 - 「基礎統計」(1/2セメ)
 - 「基礎統計演習」(3/4セメ)
 - 「データ処理応用」(2/3セメ)
 - 「統計モデル分析」(5セメ)
 - 「ビッグデータ・AI演習」(6セメ)

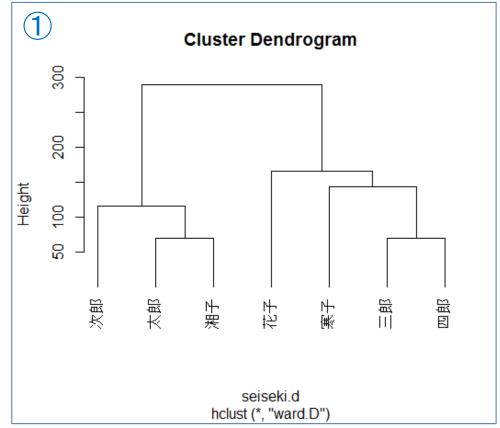
Rを起動、csv ファイルをデータとして読込み - 「マイドキュメント(Y:) |の「R |フォルダに保存

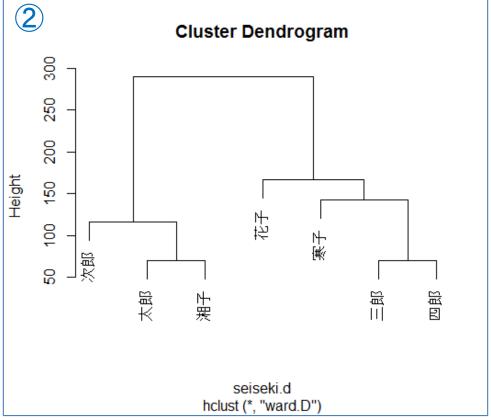
data-seiseki.csv

		算数	理科	国語	英語	社会
,	太郎	90	100	70	90	30
	次郎	80	60	70	70	20
	三郎	100	40	30	70	80
	四郎	60	30	40	80	80
	花子	30	60	80	90	90
	寒子	50	60	40	30	60
	湘子	90	100	90	80	70

• csvファイルを読み込み、変数seisekiに代入

> seiseki <- read.csv("Y:/R/data-seiseki.csv", header=T, row.names=1)

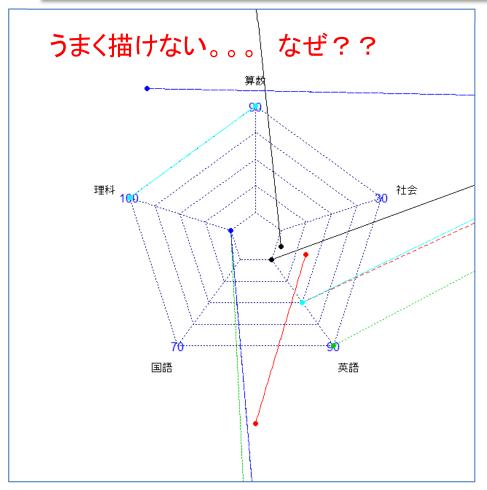

- 関数 dist() で距離を計算し, seiseki.dに代入
 - > seiseki.d <- dist(seiseki, "manhattan")
 - ※マンハッタン距離("manhattan")を用いて距離を計算している他の距離を使いたいときは"manhattan"を以下に変更


```
"euclidean" =ユークリッド距離
"minkowski", p=3 = p=3のミンコフスキー距離
"maximum" = l<sub>∞</sub>ノルム (える むげんだい のるむ)
```

- ・ 階層クラスター分析をし、結果をseiseki.hcに代入
 - > seiseki.hc <- hclust(seiseki.d, "ward.D2")
 - ※ウォード法("ward.D2")を用いてクラスター分析を実施している他の方法を使いたいときは、"ward.D2"を以下に変更


```
"single"=最短距離法,<br/>"average"=群平均法,"complete"=最長距離法<br/>"centroid"=重心法,"median"=中央值法
```

- ・ 結果をデンドログラム(樹形図)で描画①
 - > plot(seiseki.hc, hang=-1)
- ・ 結果をデンドログラム(樹形図)で描画②
 - > plot(seiseki.hc)



- デンドログラム(樹形図)を4つに分割
 - > plot(seiseki.hc, hang=-1)
 - > rect.hclust(seiseki.hc, k=4, border="red")
 - ※分割数を4に指定
 - ※分割線の色を赤に指定

Tips! 結果(樹形図)をレーダーチャートと比較

- > install.packages("fmsb")
- > library(fmsb)
- > radarchart(seiseki, axistype=2, オプション指定勉強せよ)

【練習】距離とクラスター化の方法,分割数を以下の設定に 従ってクラスター分析をし,樹形図を描き,比較せよ

	距離	クラスター化の方法	分割数
1	ユークリッド距離(euclidean)	最短距離法(single)	4
2	ユークリッド距離(euclidean)	最長距離法(complete)	4
3	ユークリッド距離(euclidean)	群平均法(average)	4
4	ユークリッド距離(euclidean)	重心法(centroid)	4
5	ユークリッド距離(euclidean)	中央値法(median)	4
6	ユークリッド距離(euclidean)	ウォード法 (ward.D2)	4

	距離	クラスター化の方法	分割数
1	マンハッタン距離 (manhattan)	最短距離法(single)	4
2	マンハッタン距離 (manhattan)	最長距離法(complete)	4
3	マンハッタン距離 (manhattan)	群平均法(average)	4
4	マンハッタン距離 (manhattan)	重心法(centroid)	4
5	マンハッタン距離 (manhattan)	中央値法(median)	4
6	マンハッタン距離 (manhattan)	ウォード法(ward.D2)	4

※たくさん計算するので 変数は整理して使う 例えば, 距離は seiseki.man <- dist(...)</pre> seiseki.euc <- dist(...)</pre> などとし、ユークリッド距 離とマンハッタン距離を 計算した結果を, わかり 易い名前の別変数で区 別し、クラスター化も「距 離 方法]付加で区別等 seiseki.e si <-hclust(...)</pre> seiseki.e cp <-hclust(...)</pre> seiseki.e_av <-hclust(...)</pre> seiseki.e ce <-hclust(...) seiseki.e m <-hclust(...)</pre> seiseki.m_si <-hclust(...)</pre> seiseki.m_cp <-hclust(...)</pre>

Tips! 画面を分割して、複数の図を比較する

> par(mfrow=c(2,3))

★ ※1画面を2×3に分割

- ※c(x,y) の x, y に分割したい 行数(x)と列数(y)を指定する
- ※この命令の後、plotなどで図を描画すると、左上から順に描画されていく
- ※6個描かれた後、7個目を描くと、画面がクリアされてまた 左上から順に描画される
- ※別の分割に変えたい場合は、変えたい設定でもう一度 実行すれば良い(何度でも変 更可能)

Tips! 画面分割, 複数図描画(前ページの場合の実行例)

```
> seiseki.euc <- dist(seiseki, "euclidean")
> seiseki.e_si <- hclust(seiseki.euc, "single")
> seiseki.e_cp <- hclust(seiseki.euc, "complete")</pre>
> seiseki.e av <- hclust(seiseki.euc, "average")
> seiseki.e ce <- hclust(seiseki.euc, "centroid")
> seiseki.e m <- hclust(seiseki.euc,"median")
> seiseki.e wa <- hclust(seiseki.euc,"ward.D2")
> par(mfrow=c(2,3))
> plot(seiseki.e si,hang=-1)
> rect.hclust(seiseki.e_si,k=4,border="red")
> plot(seiseki.e_cp,hang=-1)
> rect.hclust(seiseki.e cp,k=4,border="red")
> plot(seiseki.e_av,hang=-1)
> rect.hclust(seiseki.e av,k=4,border="red")
> plot(seiseki.e ce,hang=-1)
> rect.hclust(seiseki.e ce,k=4,border="red")
> plot(seiseki.e m,hang=-1)
> rect.hclust(seiseki.e m,k=4,border="red")
> plot(seiseki.e_wa,hang=-1)
> rect.hclust(seiseki.e wa,k=4,border="red")
```

ユークリッド距離を計算

クラスター分析実施 上から順に、6つの方法でそれぞれ計算し結果を保存

6つの結果を描画したいので 画面を2x3の6分割

6つの結果を順に描画 それぞれ2行で1つの画面を 作っており、 plot(...) が樹形図描画 rect.hclust(...) が分割線描画 をしている

Tips! たくさんの命令を打つのは大変だし間違えちゃう!

一度にまとめて命令したい!

- ① まとめて実行したい命令(右)を1つのファイルに書く. 制作には「TeraPad」や「メモ帳」「秀丸」などのテキストエディタを使う
- ② ファイルの種類を「全てのファイル」にし、「ファイル名.R」で保存.このとき、ファイル名は半角アルファベットが良い(例:ファイル名「euc_clust.R」とし「Y:/R/」フォルダに保存)
- ③ R(R Studio)で以下を実行

> source("Y:/R/euc_clust.R")

※ソースコード「euc_clust.R」内に間違いがなければ全て順に実行される. 間違いがある場合は、その場所でエラーが出て止まる

【演習】manhattan 距離で同様のファイル「man_clust.R」をつくり実行しよう

```
seiseki.euc <- dist(seiseki, "euclidean")</pre>
seiseki.e si <- hclust(seiseki.euc, "single")
seiseki.e cp <- hclust(seiseki.euc, "complete")</pre>
seiseki.e av <- hclust(seiseki.euc, "average")</pre>
seiseki.e ce <- hclust(seiseki.euc, "centroid")</pre>
seiseki.e_m <- hclust(seiseki.euc,"median")</pre>
seiseki.e wa <- hclust(seiseki.euc,"ward.D2")
par(mfrow=c(2,3))
plot(seiseki.e_si,hang=-1)
rect.hclust(seiseki.e_si,k=4,border="red")
plot(seiseki.e_cp,hang=-1)
rect.hclust(seiseki.e cp,k=4,border="red")
plot(seiseki.e_av,hang=-1)
rect.hclust(seiseki.e_av,k=4,border="red")
plot(seiseki.e ce,hang=-1)
rect.hclust(seiseki.e ce,k=4,border="red")
plot(seiseki.e m,hang=-1)
rect.hclust(seiseki.e m,k=4,border="red")
plot(seiseki.e wa,hang=-1)
rect.hclust(seiseki.e_wa,k=4,border="red")
```