2025 | 7 | 1 Jue.

問題解決技法入門

4. GIS 2. Voronoi diagram

堀田 敬介

※GIS = Geographic Information System(s), 地理情報システム

Voronoi diagram とは?

- ボロノイ図 Voronoi diagram
 - 空間上の複数個の点(母点)をもとに領域分割
 - 各領域(ボロノイ領域)から最も近い母点はその領域内の母点
 - 2次元ユークリッド空間上でユークリッド距離を考えると、各領域 は2点の垂直二等分線で分割されるその際、3つの母点を分け る境界線の交点は1点で交わる(ボロノイ点)

1. データの取得の準備

① マイドキュメント [K:]ドライブ にデータ用の専用フォルダを作る フォルダ名は「GISdata」とする

※GISで使用するデータ(shpファイルなど)は、一度保存場所を決めて保存したら、 その後は絶対にいじってはならない、フォルダを移動したり、ファイル名を変更した りしたらダメ

※GISで使用するファイル専用のフォルダとする

QGISでVoronoi図を簡単に描く
2. <u>データの取得①(行政区域データの取得)</u>
① ブラウザで「国土数値情報」を検索
→ 国交省:「国土数値情報 ダウンロードサービス」サイトへ

②「データー覧」にある
[ポリゴン] は多角形のデータ
[2.政策区域」ー「行政地域」ー「行政区域(ポリゴン)」選択

③「ダウンロードするデータの選択」で ダウンロードしたい地域(都道府県)と年 を探し,対応する右側の[↓]ボタンをクリック 世界測地系 2024年(令和6年) 4.33MB №3-20240101_14_GML.zip

④ ダウンロードしたファイルを、準備で作成したGIS専用のフォルダ 「GISdata」に保存

QGISでVoronoi図を簡単に描く 3. <u>データの取得②(学校データの取得)</u> ① ブラウザで「国土数値情報」を検索 → 国交省:「国土数値情報 ダウンロードサービス」サイトへ

「データー覧」にある
 「3.地域」ー「施設」ー「学校(ポイント)」選択

③「ダウンロードするデータの選択」で ダウンロードしたい地域(都道府県)と年 を探し,対応する右側の[↓]ボタンをクリック 世界測地系 2023年(令和5年) 0.66MB P29-23_14_GMLzip

④ ダウンロードしたファイルを、準備で作成したGIS専用のフォルダ 「GISdata」に保存

QGISでVoronoi図を簡単に描く 4. <u>データ(zip圧縮ファイル)の解凍</u> ① マイドキュメント([K:]ドライブ)内のデータ保存用フォルダ 「GISdata」に保存したダウンロードデータを解凍する ←マイドキュメント K: GISdata ←GIS用のデータを保存するために作った専用フォルダ N03-20240101_14_GML.zip ←ダウンロードした圧縮ファイル① P29-23_14_GML.zip ←ダウンロードした圧縮ファイル②

※拡張子がzipのファイルは、「zip形式」という「圧縮ファイル形式」の1つ

<圧縮ファイルの解凍の仕方> ファイルを「右クリック」し、「すべて展開」を選ぶ ※このとき、セキュリティ警告が出る場合は [OK] でよい

※ファイルを解凍すると、ファイル名と同じ名前の「フォルダ」ができ、その中に解凍 されたファイルが複数ある

QGISでVoronoi図を簡単に描く 5. QGISで行政区域を表示 QGIS x.xx.xx を起動 QGIS 2.18 (※x.xx.xx はバージョン番号) GRASS GIS 7.2.1 左下(or中央下)「Windows」マークから 1 OSGeo4W Shell 「全てのプログラム(or全てのアプリ)」を選ぶ 2 QGIS Browser 2.18.13 「Q」の項目にある「QGIS x.xx.xx」をクリック OGIS Browser 2.18.13 with GR 3 QGIS Desktop 2.18.13 4. その中から「QGIS Desktop x.xx.xx」を選択

※この資料に出てくる画面は、QGISの異なる幾つかのバージョンが混在している(例: 2.18.13, 3.4.1, 3.22.8, 3.34.12 など)ので、メニュー画面 表示名や実行操作 結果等が、今、実際に使っているものと異なる場合があることに注意 異なる場合は、適宜、読み替えて実施せよ

QGIS Desktop 2.18.13 with GR

Qt Designer with QGIS 2.18.13

SAGA GIS (2.3.2)

Setup

QGISでVoronoi図を簡単に描く 5. <u>QGISで行政区域を表示</u> (2) メニューの 「レイヤ(L)」―「レイヤの追加」―「ベクタレイヤの追加」 を選択 Q 無題のプロジェクト - QGIS プロジェクト(J) 編集(E) レイヤ(L) 設定(S) プラグイン(P) ベクタ(O) ラスタ(R) ビュ-(V) データベー<u>ズ(D)</u> Web(<u>W</u>) プロセッシング(<u>C</u>) ヘルプ(H) データソースマネージャ(D) Ctrl+L H レイヤの作成 🦳 📽 Vĩ 🖊 🖏 ▶ 🕼 ベクタレイヤの追加... レイヤの追加 Ctrl+Shift+V ブラウザ 埋め込みレイヤとグループ... - ラスタレイヤの追加... Ctrl+Shift+R ラ デリミティッドテキストレイヤの追加... L 2 T 🟦 🛛 レイヤ定義ファイルからの追加... PostGISレイヤの追加... Ctrl+Shift+D 🕁 お気に入り スタイルのコピー 69 SpatiaLiteレイヤの追加... Ctrl+Shift+L > 🖸 ホーム スタイルの貼り付け MSSQL 空間レイヤの追加... C C:¥ Ctrl+Shift+M レイヤのコピー R9. D:¥ DB2 空間レイヤの追加... Ctrl+Shift+2 🔮 GeoPackage レイヤ/グループの貼り付け Q Oracle Spatial レイヤの追加... Ctrl+Shift+O SpatiaLite 仮想レイヤの追加/編集... 属性テーブルを開く(A) F6 PostGIS 62 WMS/WMTSレイヤの追加... Ctrl+Shift+W 編集∓−ド切替 MSSOL ArcGIS MapServer レイヤの追加(G)... 68 レイヤ編集内容の保存 Oracle WCSレイヤの追加… 現在の編集 DB₂ WFSレイヤの追加... WMS/WMTS 名前をつけて保存(S)... ArcGIS FeatureServer レイヤの追加(C)... XYZ Tiles レイヤ定義ファイルとして保存... A MCS

QGISでVor	onoi図を 簡単に 描く
5. <u>QGISで行政区域</u>	<u>を表示</u>
③「データソースマネ- クタデータセット] の	ージャ ベクタ」d-boxの [ソース] にある [ベ 欄の右端のボタンをクリック
 マデータソースマネージャー ベクタ ブラウザ マデータブクタ マデータスタ デスタ メッシュ アリミティッドテキスト GeoPackage SpatiaLite マテータorsgreSQL MSSQL Oracle 	
DB2 び の想レイヤー で WMS/WMTS ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	✓ この画面に戻るので、「追加」ボタンを1回だけクリックしてから「閉じる」

※この時, 次ページの「座標変換の選択」d-box が表示 される場合があるが, 次ページにあるとおり[OK]で良い

QGISでchoropleth図を簡単に描く 5. QGISで行政区域を表示 「***の座標変換の選択」d-box (4) が表示される(場合がある) Tips! CRS = Coordinate Reference System = 座標参照系 Q r2ka13121の座標変換の選択 地図上で位置を表す決まり事のこと. これを指定 2つのCRSの間で複数の座標変換が可能です。用途やデータの原点、その他の条件を考慮して適切 な座標変換を選択して下さい。 しないと地図を表示出来ない. 主に2種類 ▶ 地理座標系 = 地球の球面上に表現 変換元CRS EPSG:2451 - JGD2000 / Japan Plane Rectangular CS IX ▶ 投影座標系 = 平面直角座標系など 変換先の座標参照系(CRS) EPSG:4326 - WGS 84 精度(単位·m) 変換 参考:「国土地理院:日本の測地系」 I Inverse of Japan Plane Rectangular CS zone IX + JGD2000 to WGS 84 (1) lapan - onshore https://www.gsi.go.jp/sokuchikijun/datum-2 Inverse of Japan Plane Rectingular CS zone IX + JGD2000 to WGS 84 (2) Japan - onshore main.html 単位は2種類のどちらかで表現 ▶ 緯度/経度(度) Inverse of Japan Plane Rectangular CS zone IX + JGD2000 to WGS 84 (1) 例) 北緯35.xxxx度, 東経139.yyyy度 • 通用範囲: Cadastre, e<mark>r</mark>gineering survey, topographic mapping ▶ 原点(0,0)を設定し、そこからの位置(m,m) (large and medium sca**b**) 考: Original transformation by Gauss-Kruger formula. 用範囲 (null/copy) Approximation for medium and low • 適用範囲: (null/copy) OK キャンセル 変換元と変換先を確認し、 EPSG = European Petroleum Survey Group ✓ 変換したい場合は[OK] 各国測地系/投影法に振られたユニークコード ✓ 変換しない場合は[キャンセル] 例)EPSG4326 = WGS 84(世界測地系1984) ※表示後も設定変更可能(次ページ参照) 例)EPSG6668 = JGD2011(日本測地系2011)

6. <u>QGISで学校を表示</u>

① メニューから

「レイヤ(L)」--「レイヤの追加」--「ベクタレイヤの追加」

を選択				
🔇 無題のプロジェクト - QGIS				
プロジェクト(<u>J</u>) 編集(<u>E</u>) ビュー(<u>V</u>)	レイヤ(L) 設定(<u>S</u>) プラグイン(<u>P</u>)	ベクタ(<u>O</u>) ラスタ(<u>R</u>)	データベー <u>, (D)</u> Web(<u>W</u>) プロセッシング(<u>C</u>)	ヘルプ(<u>H</u>)
	データソースマネージャ(D) レイヤの作用	Ctrl+L ▶	R R 🗔 🖪 🗖 🎜 🍕	R - R - B -
🖳 📽 🖓 🎜 🖏 🖊	レイヤの追加	• 🤇	♥。 ベクタレイヤの追加	Ctrl+Shift+V
ブラウザ	埋め込みレイヤとグループ		📲 ラスタレイヤの追加	Ctrl+Shift+R
🗔 😂 🍸 🟦 🚳	レイヤ定義ファイルからの追加		▶ デリミティッドテキストレイヤの追加	
☆ お気に入り	スタイルのコピー		🤻 PostGISレイヤの追加	Ctrl+Shift+D
> 🙆 ホーム	スタイルの貼り付け		况 SpatiaLiteレイヤの追加	Ctrl+Shift+L
> 🗋 C:¥			MSSQL 空間レイヤの追加	Ctrl+Shift+M
> D:¥	レイヤのコピー		🧠 DB2 空間レイヤの追加	Ctrl+Shift+2
🍄 GeoPackage	レイヤ/グループの貼り付け		🧠 Oracle Spatial レイヤの追加	Ctrl+Shift+O
SpatiaLite	■ 属性テーブルを開く(A)	F6	😡 仮想レイヤの追加/編集	
PostGIS	// 編集モード切替		WMS/WMTSレイヤの追加…	Ctrl+Shift+W
MSSQL	→ レイヤ編集内容の保存		ArcGIS MapServer レイヤの追加(G)…	
DR2	柳 現在の編集	▶	WCSレイヤの追加…	
	77		WFSレイヤの追加	
> 🛞 XYZ Tiles	名前をつけて保存(<u>S</u>)		ArcGIS FeatureServer レイヤの追加(<u>C</u>)…	
WCS	レイヤル表ノバイルとして休仔			

※この時,次ページの「座標変換の選択」d-box が表示 される場合があるので,適切に設定する

6. <u>QGISで学校を表示</u>

6. <u>QGISで学校を表示</u>

③「レイヤ」パネルの<u>学校のレイヤ("P29-…")</u>を右クリックし,「属 性テーブルを開く」を選択.次の設定④で使う項目名を確認

QGISでVoronoi図を簡単に描く 6. QGISで学校を表示

③ 国土交通省の「国土数値情報」サイトの該当ダウンロード ページでも確認できるので,次の設定④で使う項目名を<mark>確認</mark>

属性名 (かっこ内はshp属性名)	説明	属性の型
位置	学校の位置	点型(GM_Point)
行政区域コード (P29_001)	都道府県コードと市区町村コードからなる、学 校が存在する行政区を特定するためのコード	コードリスト型 「 <u>行政区域コード</u> 」
学校コード (P29_002)	全国の学校に設定された固有の「学校⊐ード」	文字列型
学校分類 (P29_003)	学校の種別を特定するためのコード	コードリスト型 「 <u>学校分類コード</u> 」
名称 (P29_004)	学校の正式名称	文字列型
所在地 (P29_005)	学校の市区町村名を省いた所在地	文字列型
管理者コード (P29_006)	学校の管理者を区分するためのコード	コードリスト型 「 <u>管理者コード</u> 」
休校区分 (P29_007)	学校の休校中情報を特定するためのコード	コードリスト型 「 <u>休校コード</u> 」
キャンパスコード (P29_008)	学校のキャンパスを区分するためのコード	コードリスト型 「 <u>キャンパスコード</u> 」
学校名備考 (P29_009)	キャンパスの名称等	文字列型

6. <u>QGISで学校を表示</u>

④「レイヤ」パネルの<u>学校レイヤ("P29-…")</u>を右クリックし,「プロ パティ」を選ぶ

6. <u>QGISで学校を表示</u>

⑥「シンボロジ」を選択し、「カテゴリ値による定義」を選び、[値]に
 [P29_003]を設定し、[分類]ボタンを押す

6. <u>QGISで学校を表示</u>が完成

ラベルとして「学校名[P29_004]」が表示され, 点の色が「学校分類コード[P29_003]」で色 分けされた

QGISでVor	onoi図を 簡単に 描く
7. <u>QGISで学校のボ</u>	<u>ロノイ図作成</u>
① メニューから	
「ベクタ(O)」―「ジオ	トメトリツール」—「Voronoi polygons」
を選択	
プロジェクト(J) 編集(E) ビュー(⊻) レイヤ(L) 設定(S) プ	ラグイン(ビ) <mark>ベクタ(<u>O</u>) ラス(1(R) データベース(D) Web W</mark>) メッシュ(<u>M</u>) プロセシング(<u>C</u>) ヘルプ(<u>H</u>)
🗋 🗁 📑 🔂 🛐 💕 🍄 🎜	
🥥 😪 🏹 🚜 🔛 🕅 🖉	ア 一 解析ツール(A) → 業 シングルパートをマルチパートに集約…
ブラウザ 回図	調査ツ−ル(<u>R</u>)
	データ管理ツール(<u>D</u>) 🔶 🔆 頂点を <mark></mark> 寄密度化(個数ベース)
☆ お気に入り	
▶ Ⅲ 空間ブックマーク	シュシュアーチ國中寺部 🛜 マルチバートをシングルパートに変換
	相侯原中立藤町南小子和 🖉 ポリゴンを線に変換
G# (Windows) E-¥ (SONV_128GU)	認定ことも 🕸 ジオメトノを簡素化
GeoPackage	相模度了 🔝 Voronoi polygons
SpatiaLite	清川村 🗸 有効性チェック
PostgreSQL	── ジオメトリ属性を追加
MS SOL Server	

7. QGISで学校のボロノイ図作成

② 「Voronoi polygons」d-box の[入力レイヤ]が[P29-23 14]である ことを確認し、「実行」をクリック.計算終了後「閉じる」クリック

ſ	 ベクタジオメトリ - Voronoi polygons 		×	
	15-0	4	Voronoi polygons	
	入力レイヤ 『** P29-23_14 [EPSG:6668]	· 🗘 🗸 🖂	Generates a polygon layer containing the Voronoi diagram corresponding to input points.	
	□ 選択した地物のみ Buffer region (% of extent)		レイヤ	80
	1.000000 許容範囲 [オプション] 0.000000		Voronoi polygo	ons
	Copy attributes from input features Voronoi polygons		✓ N03-20240 01	I_14
	[一時レイヤを作成] ▼ アルゴリズムの終了後に出力ファイルを開く		計算が終了すると、レ	イヤパネルに
「 <mark>実行</mark> 」をクリッ 計算が開始され	クすると れるので		<u>[Voronoi polygons]とい</u> に作成され, <u>結果(図)</u> 確認できたら [<mark>閉じる</mark>] -	<u>・うレイヤ</u> が新規 <u>が表示</u> される クリック
終わるまで静た	かに待つ	0%	キャンセル	
	詳細パラメータ ▼ バッチプロセスで実行…		実行開じるヘルプ	

7. <u>QGISで学校のボロノイ図作成</u>

- 7. <u>QGISで学校のボロノイ図作成</u>
 - ③ メニューから
 - 「ベクタ」—「空間演算ツール」—「切り抜く(clip)」

を選択

7. <u>QGISで学校のボロノイ図作成</u>

📿 ベクタオーバーレイ - 切	り抜く (clip)	×
パラメーター ログ		¹ 切り抜く(clip)
入力レイヤ (PP Voronoi polygons	[EPSG:6668] - C	このアルゴリズムは、別のポリゴンレイヤの地物を使用 して入力ベクタレイヤを切り抜きます(クリップします)。 オーバーレイレイヤのポリゴンと重なった部分だけが出 力レイヤに追加されます。
 □ 選択した地物のみ オーバーレイレイヤ № N03-20240101_14 	[EPSG:6668]	地物の面積や長さなどのプロパティは、クリッピング(切 り抜き)によって変更されますが、地物の属性テーブル は変更されません。そのようなプロパティがテーブルに 格納されている場合、手動で更新(再計算)する必 要があります。
 」 選択した地物のみ 切り抜き結果 〔一時レイヤを作成〕 ✓ アルゴリズムの終了行 	していた。 後に出力ファイルを開く	
	「ベクタオーバーL ✓ [入力レイヤ] る	レイ-切り抜く」d-box で を [Voronoi polygons] に設定
「 <mark>実行」をクリックすると</mark> 計算が開始されるので	✓ 「オーハーレイ 「実行」をクリック」	レイヤ」を [N03-20…] に設定 .計算終了後「閉じる」クリック
終わるまで静かに待つ		
	0% ジロセスで実行…	キャンセル 実行 閉じる ヘルプ

7. <u>QGISで学校のボロノイ図作成</u>

QGISでVoronoi図を簡単に描く 7. QGISで学校のボロノイ図作成

④「シンボロジ」を選んで各種設定する

7. 補足(修正)

• <u>注意事項</u>

- ✓「レイヤ」パネル内の各レイヤ(層)は、マウスのドラッグ操作で 上下の順番を入れ替えることができる
- ✓ レイヤ(層)は、追加した順に下から上へ重ねて表示される
- ✓ 下側レイヤは、重なって(表示されているのに)見えないということがあるので、前ページまでに実施した通り、上層レイヤの透過率をあげると透けて見えるようになる(0%⇔100%=透明)

✓ この例では、4つのレイヤ(層)は

- ▶ 「切り抜き結果」 ←神奈川県の形に切り取ったボロノイ図
- ➤ 「Voronoi polygons」 ← ボロノイ図(非表示にしてある)
- ▶ 「P29-23_14」
- ▷ 「N03-20240101…」
 となっている
- ←<u>学校の点(ポイント)</u>とラベル「名称」(色分け済)
- 「N03-20240101…」 ←神奈川県の<u>行政区域(ポリゴン)</u>地図

作成した図のファイル出力(詳細版)

- ・ <u>印刷レイアウトで出力ファイル(画像)を作成</u>
 - ① メニューから「プロジェクト」ー「新規印刷レイアウト」を選択
 - ▶ 「印刷レイアウトのタイトルの作成」でタイトルをつけて「OK」
 - ②「印刷レイアウト」画面で作業
 - A) 「追加」ー「地図を追加」 →画面内の適当な場所へ(画面 上の左上から右下にドラッグし,適当なサイズの長方形を描く)
 - ✓ 地図サイズを変更したい場合、右側の「アイテムプロパティ」タブを 選択し、「縮尺」の数値を適当な値に設定し、「Enter」キーを押す. ちょうど良いサイズになるよう数値を変更して調整する
 - B) 「追加」-「スケールバーを追加」 →画面内の適当な場所へ
 - C) 「追加」-「凡例を追加」 →画面内の適当な場所へ
 - D) 「追加」-「ラベルを追加」 →画面内の適当な場所へ
 - ✓ 「凡例」や「ラベル」の書式等を変更したい場合, それぞれを選択後, 右側の「アイテムプロパティ」で行う

③「レイアウト」ー「画像としてエクスポート」を選び名前を付け保存

補足:Voronoi領域の面積・外周長計算

- <u>
 面積・外周長の計算(1)</u>
 - ① メニューから

「ベクタ」―「ジオメトリツール」―「ジオメトリ属性を追加」を選択

②「ジオメトリ属性の追加」d-boxで以下を設定

- ▶ [入力レイヤ]= ボロノイ多角形
- ▶ [計算に利用...]=レイヤのCRS
- ▶ [出力レイヤ]
 - 右のボタンをクリックし
 - [一時レイヤを作成]を選択
- ▶ [アルゴリズムの終了…] に 🛛
- ③ 設定後 [<mark>実行</mark>] クリックし
- ④ [<mark>閉じる</mark>] クリック

1	Q ジオメトリ属性を追加		
	パラメータ ログ	•	ジオメ
	 入力レイヤ ○ ボロノイ多角形 [EPSG:4612] ▼ はつくろうのです。 		このアルゴ!! 性(長さや) 新規レイや
ſ	□ 選択した地物のみ 計算に利用する座標参照系(CRS)		はレイヤの 点レイヤ:)
	レイヤのCRS -		線レイヤ: b (straighto
	出力レイヤ [一時レイヤを作成]	J	ポリゴンレー
	▼ アルゴリズムの終了後に出力ファイルを開く		

補足: Voronoi領域の面積・外周長計算

- ・<u>面積・外周長の計算(2)</u>
 - ⑤「レイヤパネル」に新しく「出力レイヤ」が追加されている

- ⑥ 名称("出力レイヤ")を右クリックし、「属性テーブルを開く」選択
 - ▶ 新しいフィールド(項目)が2つ追加されている
 - ✓ [AREA] 各ボロノイ領域の面積
 - ✓ [PERIMETER] 各ボロノイ領域の外周長

名称("ボロノイ多角形")を右クリックし、「属性テーブルを開く」選択して比較しよう こちら(元々のデータ)には [AREA] と [PERIMETER] はないことを確認