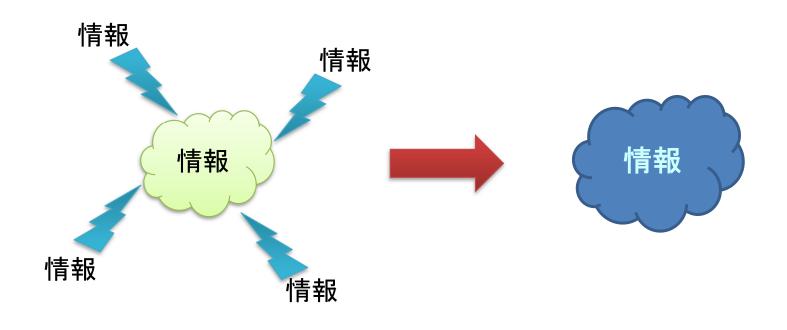
知の探究

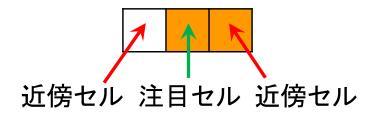
3.セルオートマトン

堀田 敬介


- Cellular Automata
 - オートマトンとは?

「内部に何らかの情報を保持しながら、外部からの情報を入力され、その結果として情報を出力するシステム」[1]

Cellular 細胞の


Automata 自動人形(からくり人形)

- ※Automaton(単数形)
- ※有限オートマトン(Finite Automata)
 John von Neumann (1940s)

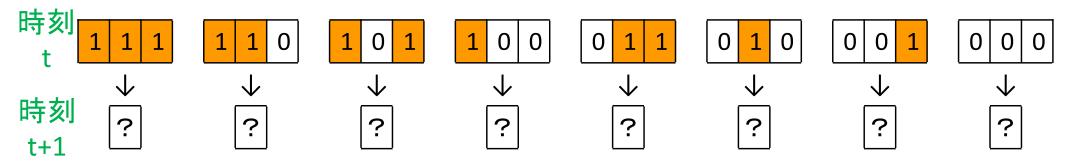
- 現在注目している1つのセルとその近傍
 - あるセル(注目セル)に対し、その両隣のセルを<u>近</u>傍とよぶ

- ・ 両端のセルの近傍の設定方法は2種類
 - 1. 周期境界条件 ... 「左端セルの左側近傍は, 一番右端のセル」「右端セルの右側近傍は, 一番左端のセル」と考える(※ドーナツのイメージ)
 - 2. 開放境界条件 …「左端セルの左側近傍は, なし」「右端セルの右側近傍は, なし」と考える

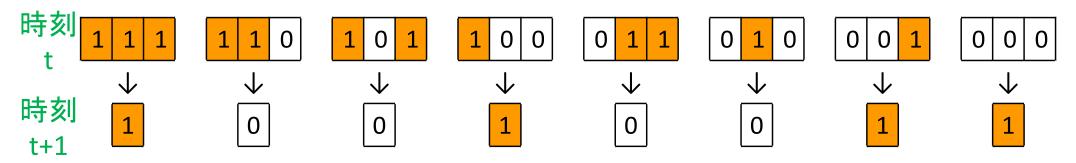
- 1次元セルオートマトン
 - 各セルは時間と共に状態が変化する
 - 次の状態への変化は、自分と近傍の現在状態による (時刻t+1の状態は、時刻tの自分と近傍の状態による)
 - 状態は「0」「1」の2値で表現するので、現在の状態の可能性は全部で8パターンとなる(なぜか?)

時刻tの

近傍セル 注目セル


時刻tの

近傍セル


時刻t+1の

注目セル

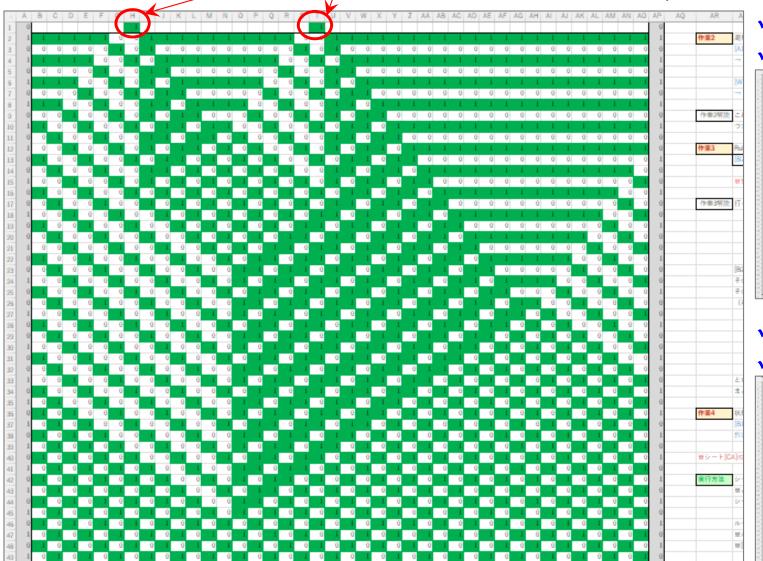
時刻tの

時刻t→t+1の状態変化の例

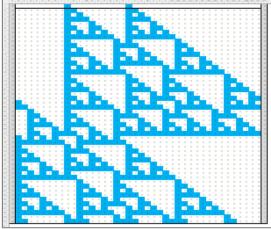
時刻t+1の8パターンの状態を2進数 10010011 と考え, 10進数に変換すると $(10010011)_2 = (147)_{10}$ である 故に, この時刻 $t \rightarrow t+1$ の状態変化を「ルール147」とよぼう

時刻t+1の考えられるパターンは全部で256個あるなぜなら $(00000000)_2$ ~ $(111111111)_2$ より 2^8 =256個 $(0000000)_2$ =「ルール0」~ $(111111111)_2$ =「ルール255」

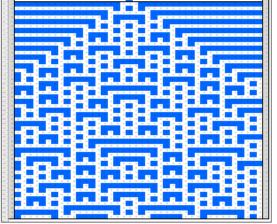
• ルールの例


(01011010)₂ = (90)₁₀ より、これは「ルール90」

 $(00011110)_2 = (30)_{10}$ より、これは「ルール30」


• 実行例)

✓ 初期状態(時刻t=0の状態)は, セル [H1]と[T1]の2箇所が1でそれ以外は0

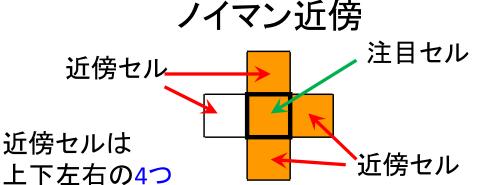

✓ 適用規則はルール57(= (0011 1001)₂)

- ✓ 初期状態[J1]=[T1]=1
- ✓ rule60 (= (0011 1100)₂)

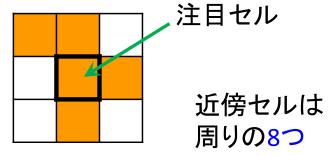
- ✓ 初期状態[T1]=1
- ✓ rule73 (= (0100 1001)₂)

参考文献:[1]北・脇田「Excelで学ぶセルオートマトン」 第5章 オーム社(2011)

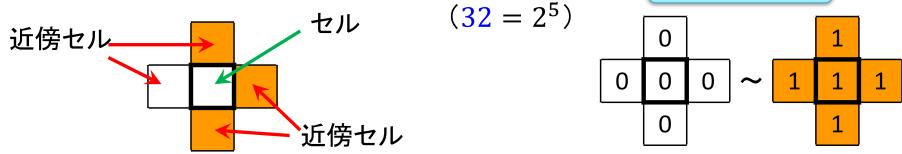
セルオートマトン

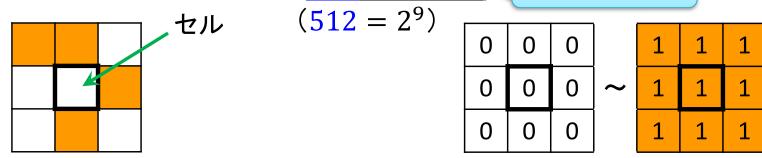

• 2次元セルオートマトン

セルの状態=1 セルの状態=0

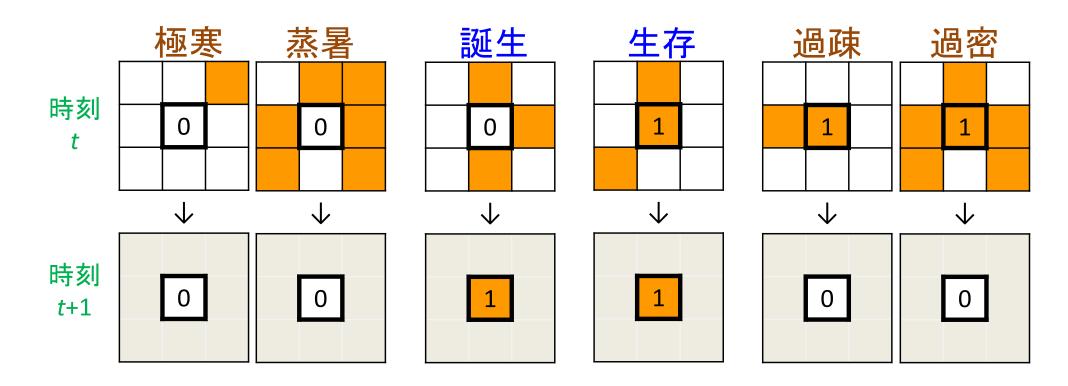

1	1	0	1	0	0	1	1	0	1	6	0
0	0	0	0	1	0	0	0	0	1	0	1
0	1	1	0	1	0	1	0	0	0	0	1
0	0	1	0	1	0	0	1	0	1	0	1
1	1	1	1	0	0	0	0	0	1	0	1
0	1	0	1	1	0	1	1	0	1	1	0
1	0	1	0	0	1	0	0	0	0	1	0

※上下左右の端のセル の近傍は<u>周期境界条件</u> とする(上下左右に無限 にスクロールするゲーム 画面等をイメージ)

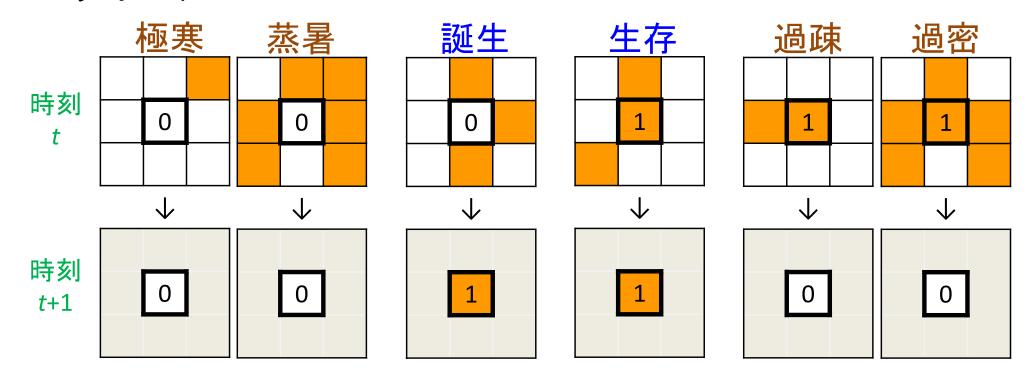

・ 現在注目している1つのセルとその近傍


ムーア近傍

- 2次元セルオートマトン
 - 各セルは時間と共に状態が変化する
 - 次の状態への変化は、自分と近傍の現在状態による (時刻t+1の状態は、時刻tの自分と近傍の状態による)
 - 状態は「O」「1」の2値で表現するので、現状の可能性は
 - ノイマン近傍の場合,全部で<u>32パターン</u> 何故か?



• ムーア近傍の場合,全部で<u>512パターン</u> 何故か?



- 2次元セルオートマトンとライフゲーム
 - セルの状態は生(1)と死(0)の2つとする
 - ムーア近傍を使う(ただし512パターンを以下の4つに分類)
 - 状態の<u>更新ルール</u>は次の4つ
 - 1. 極寒/蒸暑…自セル=死(0)&近傍セルの0-2,4-8つが生(1)→0
 - 2. 誕生 …自セル=死(0)&近傍セルの3つが生(1) →1
 - 3. 生存 …自セル= \pm (1)&近傍セルの2-3つが \pm (1) \rightarrow 1
 - 4. 過疎/過密…自セル=生(1)&近傍セルの0-1,4-8つが生(1)→0

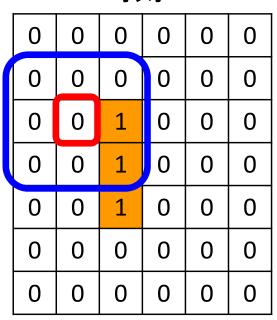
- ライフゲームのルール
 - 1. 極寒/蒸暑…自セル=死(0)&近傍セルの0-2,4-8つが生(1)→0
 - 2. 誕生 …自セル=死(0)&近傍セルの3つが生(1) →1
 - 3. 生存 …自セル=生(1) &近傍セルの2-3つが生(1) \rightarrow 1
 - 4. 過疎/過密...自セル=生(1)&近傍セルの0-1,4-8つが生(1)→0

ライフゲームのルール

• ゲームのルールを状態遷移表で表現(Excel用)

		S :	= 時刻	lt の近	・ 傍セ	ルの物	だ態の	和(= 4	生存数	女)
		0	1	2	3	4	5	6	7	8
時刻t の注目	0	0	0	0	1	0	0	0	0	0
セルの状態	1	0	0	1	1	0	0	0	0	0

時刻 *t+1* の - 注目セル の状態

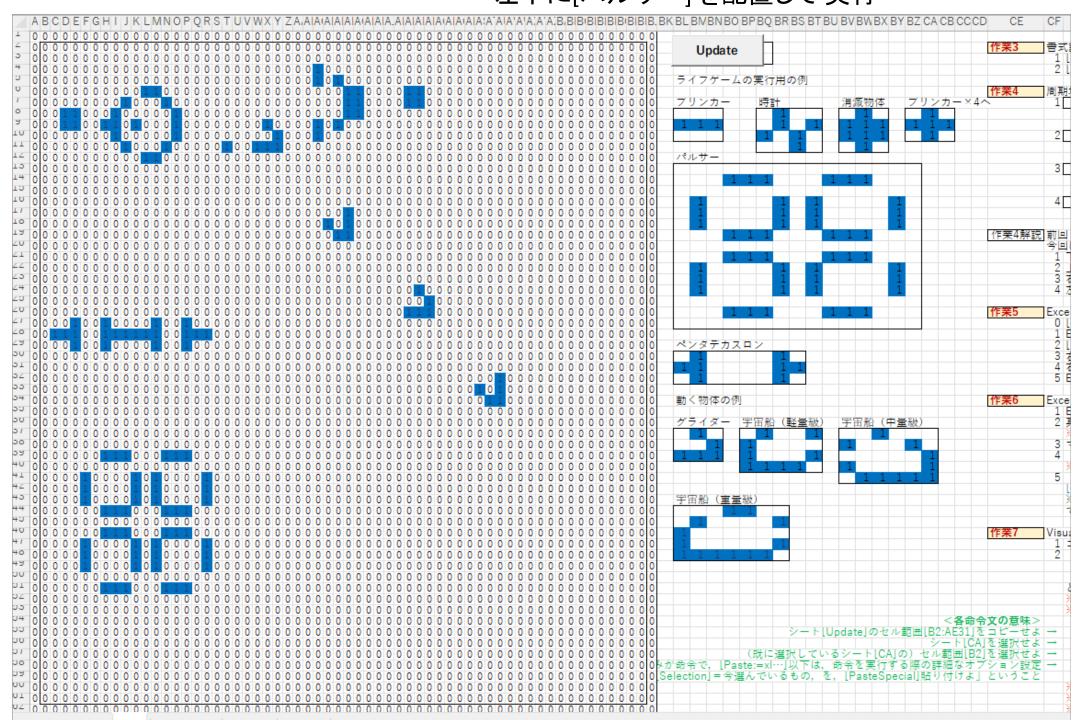

・ ゲームのルールを状態遷移表で表現(Excel用)

		S :	= 時刻	lt の近	〔傍セ	ルの物	状態の	和(= 4	生存数	女)
		0	1	2	3	4	5	6	7	8
時刻t の注目	0	0	0	0	1	0	0	0	0	0
セルの状態	1	0	0	1	1	0	0	0	0	0

時刻 *t+1* の →注目セル の状態

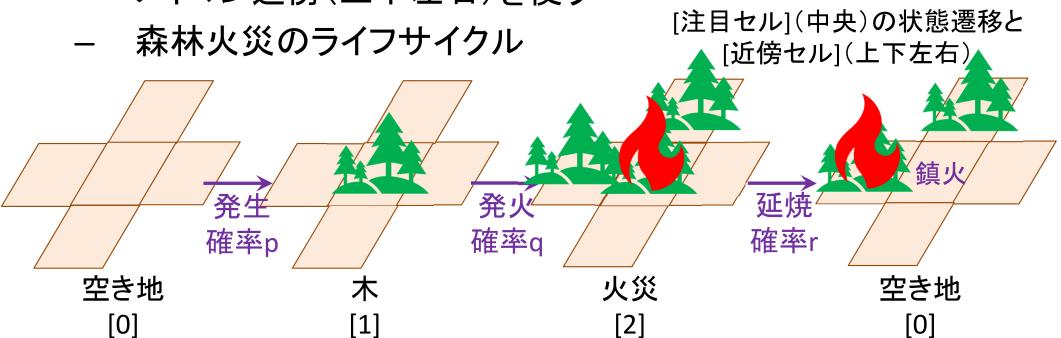
• 実行例)

時刻 t

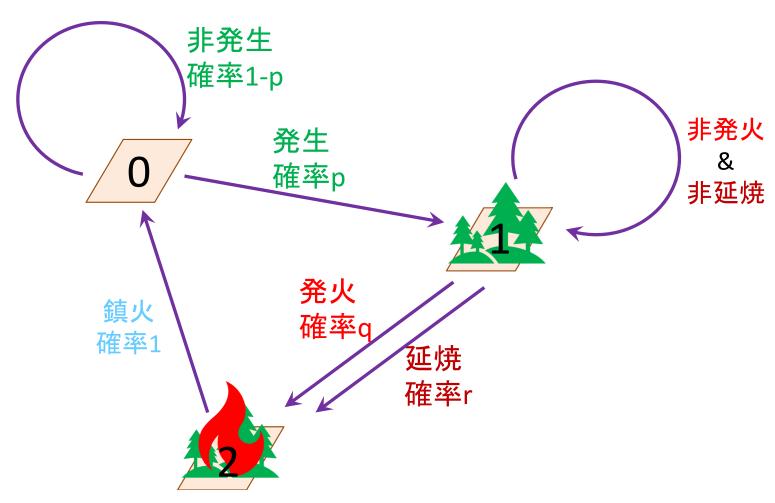


時刻 t+1

0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	1	1	1	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0


Life Game :実行例

✓ 上部に[グライダー銃], 左中央に[ペンタデカスロン], 左下に[パルサー] を配置して 実行


2次元セルオートマトンと森林火災シミュ

- セルの状態は 0(空き地),1(木),2(火災)の3つ
- ノイマン近傍(上下左右)を使う

- > 空き地[0]の状態では, 一定確率pで木が発生
- > 木[1]の状態かつ近傍全部非火災では, 一定確率qで発火
- > 火災[2]状態の近傍の木[1]は, 一定確率rで延焼
- ▶ 火災[2]状態の木は、時刻1期後に燃え尽き(鎮火)空き地[0]に

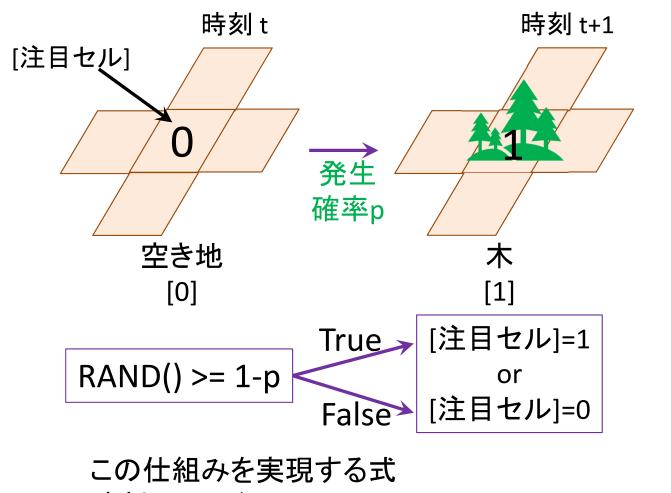
- 森林火災シミュレーション
 - 大態遷移図state transition diagram, life cycle

時刻 t+1

- 森林火災シミュレーション
 - 状態遷移図の(木[1] → 火災[2])部分の2パターン詳細

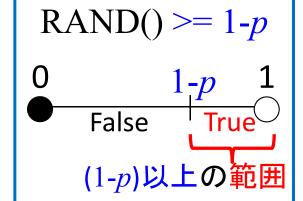
[注目セル]=1 [注目セル]=1 [近傍セル]=2が1つ以上 [近傍セル]=全てが 0 or 1 時刻t 非発火 非延焼 確率1-r 確率1-q 0 or 1 自身の発火 周りからの延焼 による状態遷移 発火 延焼 による状態遷移 木[1] → 火災[2] 確率q 木[1] → 火災[2] 確率r

RAND() は, [0,1)-一様擬 似乱数を生成する関数


範囲の書き方

[0,1] ... 0以上1未満

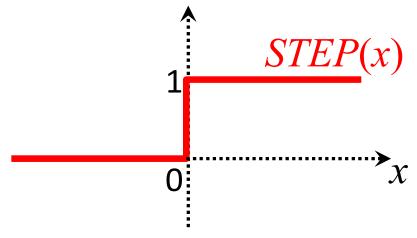
[0,1] ... 0以上1以下 (0,1] ... 0より大1以下


(0,1) ... 0より大1未満

- 森林火災シミュレーション:発生
 - [注目セル]=0(空き地)の状態では,一定確率pで木が発生

時刻t+1の[注目セル] = IF(RAND()>=1-p, 1, 0)

RAND() < p と同じ (後の都合で以下を使用)

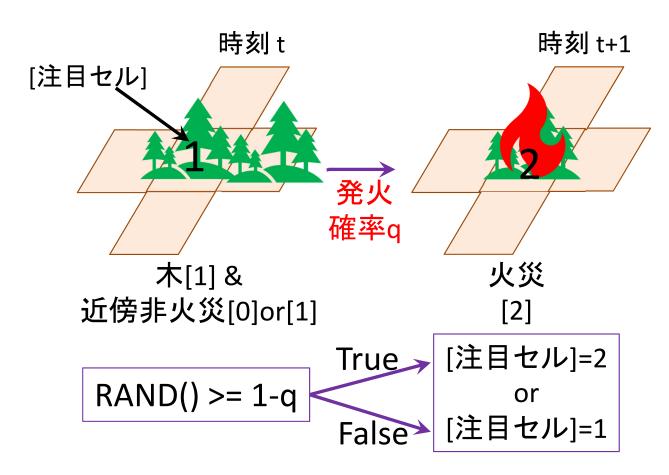

例えば、*p*=0.05なら、 1-p=0.95より, 生成した 乱数値がこの範囲に 入る確率が0.05 (5%)

補足:ステップ関数

• ステップ関数(階段関数)

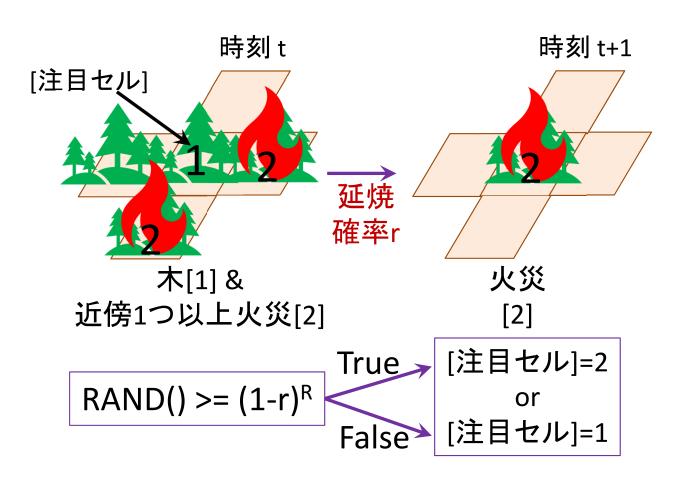
$$STEP(x) = \begin{cases} 1 & (x \ge 0) \\ 0 & (x < 0) \end{cases}$$

階段(steps)を1段上るイメージ $x \ge 0$ のときは1(段)にいる x < 0 のときは0(段)にいる


个階段を横から見てるイメージ

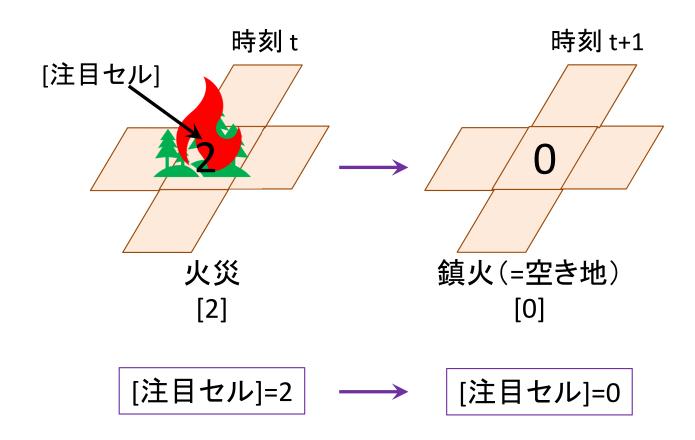
IF文を STEP関数を使って等価な式に書き換えるIF(RAND()<p, 1, 0)

- = IF(RAND()>=1-p, 1, 0)
- = IF(RAND()-1+p>=0, 1, 0)
- = STEP(RAND()-1+p)


※素直に IF(RAND()<p, 1, 0) を使わないのはSTEP関数を使いたいため (IF文の条件式を非負にしたいため)

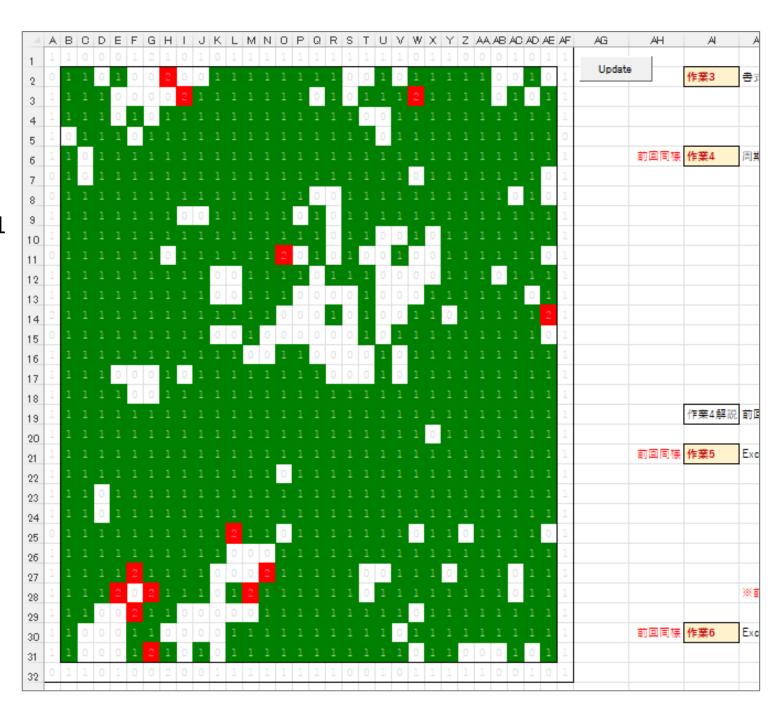
- 森林火災シミュレーション:自身の(自然)発火
 - [注目セル]=1(木)&<u>近傍全て非火災</u>では, 一定確率qで<mark>発火</mark>

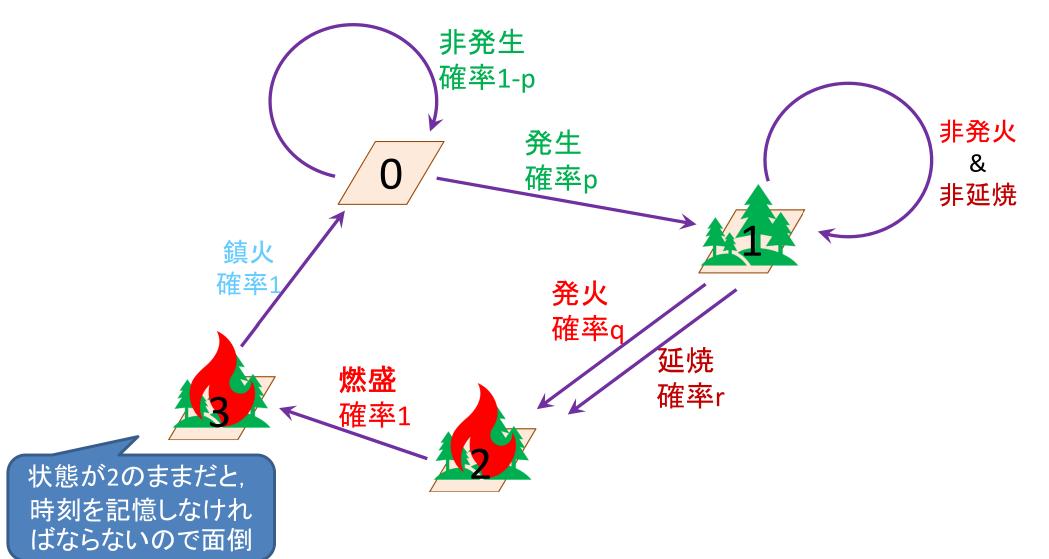
この仕組みを実現する式 時刻t+1の[注目セル] <u>= IF(RAND()>=1-q, 2, 1)</u> = <u>1 + STEP(RAND()-1+q)</u>


- 森林火災シミュレーション:周りからの延焼
 - [注目セル]=1(木)&<u>近傍1つ以上火災</u>では, 一定確率rで<mark>延焼</mark>

※R=1~4[近傍の火災数] (多いほど延焼しやすい)

この仕組みを実現する式 時刻t+1の[注目セル] <u>= IF(RAND()>= (1-r)^R, 2, 1)</u> = <u>1 + STEP(RAND()-(1-r)^R)</u>


- ・ 森林火災シミュレーション: 鎮火
 - [注目セル]=2(火災) 状態は, 1期後に(必ず)鎮火


• 森林火災

- 実行例

- ✓ 発生確率 p=0.05
- ✓ 発火確率 q=0.001
- ✓ 延焼確率 r=0.4 で実行

- 演習)森林火災シミュレーション
 - 状態遷移図を以下に変更してみよう

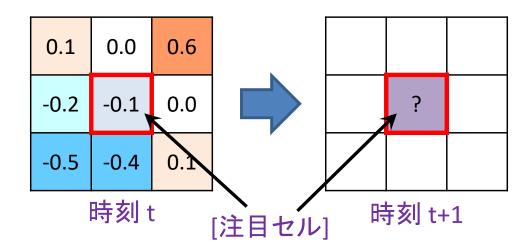
- 2次元セルオートマトンと<u>液体分離</u>シミュ
 - 混ざり合わない2つの液体(水と油など)を1つの容器内で強引に混ぜ合わせた後,時間と共に分離する様子をシミュレーションする

/					
	0.1	-0.3	0.3	1.0	0.9
	0.0	0.1	0.0	0.6	0.8
	-0.1	-0.2	-0.1	0.0	0.0
	-0.7	-0.5	-0.4	0.1	0.3
	-0.3	-0.2	0.1	0.4	0.3

容器を上から見た様子

✓ セルの状態は-1.0~+1.0の連続量

例)水と油の場合の状態量の意味


状態量		
-1.0	水のみの液体	
-0.7	水多量+ <mark>油</mark> 少量	の混合液
-0.3	水やや多十油やや少	の混合液
0.0	水 と油 が半々	の混合液
+0.3	水やや少+油やや多	の混合液
+0.7	水少量+ <mark>油</mark> 多量	の混合液
+1.0	油のみの液体	

- 2次元セルオートマトンと<u>液体分離</u>シミュ
 - 混ざり合わない2つの液体(水と油など)を1つの容器内で強引に混ぜ合わせた後,時間と共に分離する様子をシミュレーションする

/					
	0.1	-0.3	0.3	1.0	0.9
	0.0	0.1	0.0	0.6	0.8
	-0.1	-0.2	-0.1	0.0	0.0
	-0.7	-0.5	-0.4	0.1	0.3
	-0.3	-0.2	0.1	0.4	0.3

容器を上から見た様子

- ✓ ムーア近傍(8方向近傍)を使う
- ✓ 周期境界条件とする
- ✓ 時刻tの[注目セル]&[近傍セル8つ]の状態量から、時刻t+1の[注目セル]の状態量が決まる

- 2次元セルオートマトンと<u>液体分離</u>シミュ
 - 時刻t の[注目セル]の状態量 s^t 及び [8近傍セル]の状態量 a,b,c,d,w,x,y,z から, 時刻t+1の[注目セル]の状態量 s^{t+1} を決定

$$s^{t+1} = \mu \cdot \tanh(s^t) + \delta \cdot T$$

$$T = \frac{1}{6} \{ a + b + c + d \} + \frac{1}{12} \{ w + x + y + z \} - s^{t}$$
$$= \frac{2a + 2b + 2c + 2d + w + x + y + z}{12} - s^{t}$$

時刻 t 時刻 t+1 w a x b s^t d s^{t+1}

※tanh() は 双曲線正接関数 Hyperbolic tangent function 入力値を [-1.0~1.0] の 範囲の数値に変換する

 $%\mu と \delta$ はパラメータ(事前に決める定数) ex) μ = 1.3, δ = 0.5

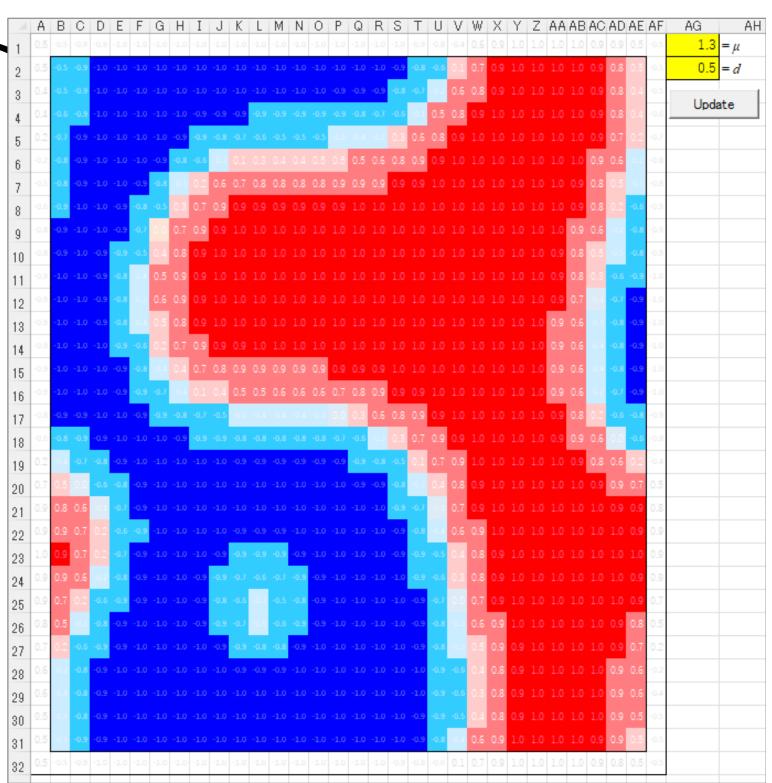
※T は「8近傍の状態の加重平均」と 「注目セルの状態」との差

 s^t ∈[-1.0,1.0] ≥,

[tanh(-1), tanh(1)] = [-0.761, 0.761] より μ=1.3 に対し,

[μ *tanh(-1), μ *tanh(1)] = [-0.990, 0.990] a,b,c,d, w,x,y,z, s^t \in [-1.0,1.0] より,

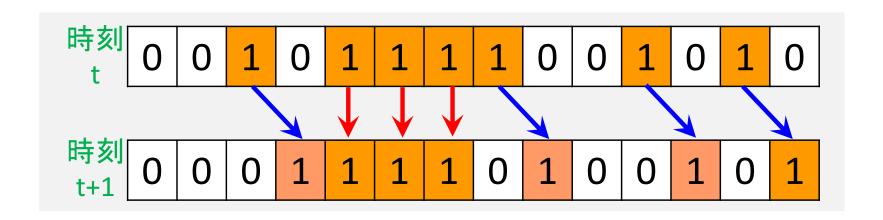
T∈[-2.0,2.0] なので,


 δ =0.5 に対し, δ •T \in [-1.0,1.0]

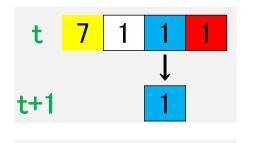
従って, <u>s^{t+1}∈[-1.0,1.0]</u> である

※ *st+1* の第1項と第2項にある *st* の正負が 逆であることに注意

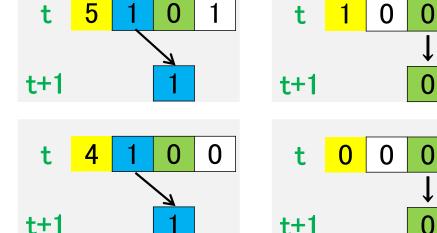
セルオート

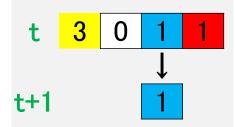

- 液体分離
 - 実行例)

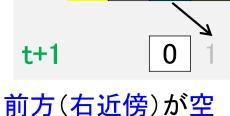
- 交通流・交通渋滞シミュレーション(1)
 - 車両の進行規則
 - 1. 速度は一定で,前方が空いている時は<u>前へ進む</u>
 - 2. 前方が詰まっている(渋滞)時はその場に留まる



- 1次元セルオートマトンで実現
 - 道路上に<u>車両が居る状態を1,居ない状態を0</u>とする




[左近傍|注目|右近傍] ※3桁の2進数(111)を 10進数に変換した値


- <u>交通流・交通渋滞</u>シミュレーション ^{時刻} t+1
 - 「車両の進行規則」を1次元セルオートマトンの「ルール」へ

前方(注目セル)が 空いているので、「左 ※空き道路(注目セ 近傍」の車が前方 (注目セル)に進む

変化なし ル)が空きのまま

0

前方(右近傍)が詰 まっている(渋滞)の で「注目セル」の車 は動かない(動けな (1)

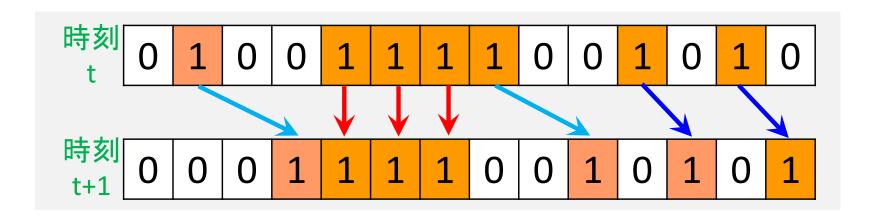
いているので「注目 セル」の車が<mark>前方に</mark> 進み, 道路が空く

t								
t+1	1	0	1	1	1	0	0	0

交通シミュレーション の基本モデル ルール184

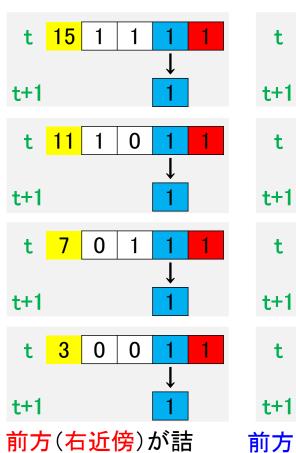
 $(=(1011\ 1000)_{2})$

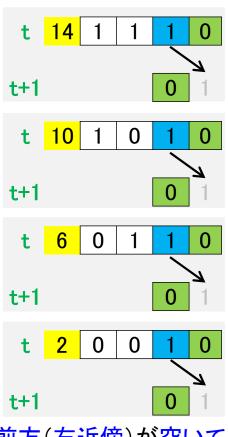
- <u>交通流・交通渋滞</u>シミュレーション(1)
 - 実行例)3車線道路(1次元セルオートマトン×3)
 - ※車線は各々独立で相互干渉なし(車線変更しない)
 - ※初期配置をセル[B11:AY13] の状態からスタート


上と中央の2車線は、車両の道路占有率が低く(24%と36%)、 渋滞していた箇所が解消されて各車両が等速で進むようになる

_																						, , ,	, ,,		D Al		, ,,,,			AJ AI	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,											_			
0	0	0 1	С	0	0	0	0	1	0	0	0	0 () 1	C			0 0	0	1	0	1	0	0	0 1	0	0	0	0	1	0 1	0	0	1	0 1	0	1	0	0 0	0 0	0	1	0 0	12	2	24.0
0	1	0 1	С	1	0	1	0	1	0	1	0	1 () 1	C) 1	(0 1	С	0	0	0	0	0	0 0	0	0	0	0	0	0 1	0	1	0	1 (1	0	1	0	0	1	0	1 (18	3	36.C
1	0	1 1	С	1	0	1	0	1	0	1	0	1 () 1	C) 1	1	1 1	1	0	1	0	1	0	1 0	1	1	1	0	1	0 1	1	1	1	0 1	0	1	0	1 0	0 1	0	1	1 1	31	6	62.0
140 T		de la															l	Jp	da	ate	9																								道路
別相	【重	例	+	4						4	+	-	+	+	4		+	+	+	+	4			+	+	4		4	-		4		-	-	+	4	4	-	+		4	4		_	
1	1	1 1	1	1	1					-	+	+			-		1 1	1	1	1	1	1	1	1 1					+				_		+			+	+			-			24. 36.
		1 1	1	1	1		1	1	1	1	1				1		1 1	1	1	1			1	1 1	1	1				1		1	1	1 1	1	1	1	-	1				31		62.
1		1 1		1	1		1	1		1	1	1	1		1	1	1	1	1		1	1		1 1		1	1		1	1	1	1		1 1		1	1		1		1	1	34	6	68.
1	1	1	1	1		1	1	1		1	1	1	1	1	1		1	1	1		1	1	1	1	1	1		1	1	1	1	1	1	1	1	1		1	1						72
- 1	1	1 1		1	1		1	1	1		1	1 1	1	1		4	1 1	1		1	1		1	1 1	- 1	1	1	1	1	1 1	1		1	1 1		1	1	-	1 1	- 1	1		40	8	80
	1	1 0		1 0 1 1 0	1 0 1 1 0 1	1 0 1 1 0 1 0	1 0 1 1 0 1 0 1	1 0 1 1 0 1 0 1 0	1 0 1 1 0 1 0 1 0 1	1 0 1 1 0 1 0 1 0 1 0	1 0 1 1 0 1 0 1 0 1 0 1	1 0 1 1 0 1 0 1 0 1 0 1 0	1 0 1 1 0 1 0 1 0 1 0 1 0 1	1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1	1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

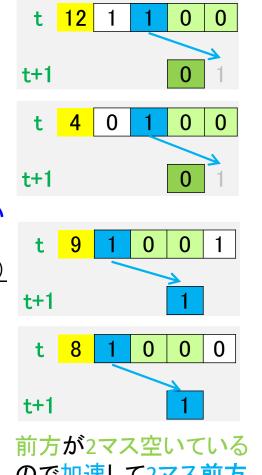
- 交通流・交通渋滞シミュレーション(2)
 - 車両の進行規則
 - 1. 速度は道路状況により,前方の<u>セルが1つ空いている時</u> <u>は1つ進み,2つ空いている時は加速して2つ進む</u>
 - 2. 前方が詰まっている(渋滞)時は<u>その場に留まる</u>


- 1次元セルオートマトンで実現
 - 道路上に車両が居る状態を1,居ない状態を0とする


※4桁の2進数(1111)を [左左近傍|左近傍|注目|右近傍] 10進数に変換した値

t 15

- 交通流・交通渋滞シミュレーション
 - 「車両の進行規則」を1次元セルオートマトンの「ルール」へ


まっている(渋滞)ので 「注目セル」の車は動 かない(動けない)

前方(右近傍)が空いて いるので「注目セル」の 車が前方に進み、道路 が空く

変化なし※空きのまま

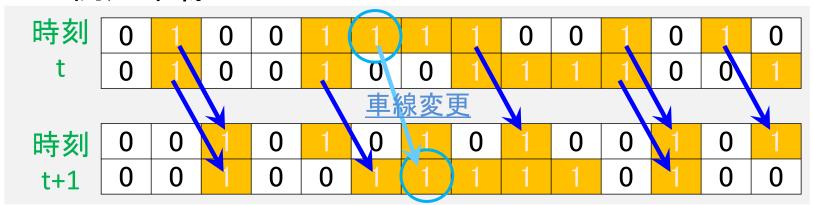
ので加速して2マス前方 に進む

- 交通流・交通渋滞シミュレーション(2)
 - 「車両の進行規則」を1次元セルオートマトンの「ルール」へ

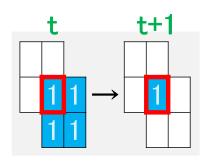
 $JV-JV43944 (= (1010\ 1011\ 1010\ 1000)_{2})$

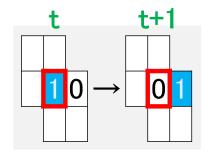
- 交通流・交通渋滞シミュレーション(2)
 - 実行例)3車線道路(1次元セルオートマトン×3)
 - ※車線は各々独立で相互干渉なし(車線変更しない)
 - ※初期配置をセル[C11:AY13] の状態からスタート

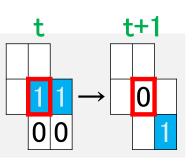
上車線は車両の道路占有率が低く(22%), 渋滞が解消されて各車両が等速(加速した速度)で進むようになる. 中央車線は, 占有率が低い(36%)が, 一部の渋滞は解消されない

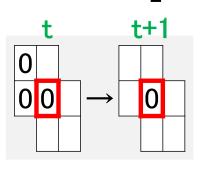

- 1	۸	_	_			_	_	_			·	-	17					-				-				1 1		, -				۰.		۰.	۰.	011	0.7	0 1 0	17.0			h I o	_ ^	D 04	- 0 -		A.T.			01410	\/ A	V 0-			_
-4	Α	В		<i>)</i> [)	E	F	G	Н		1	J	K	L	M	IA		, P	U	ŀ	1 8	-	U	V	, M	V X	Y		A	A AE	3 AU	ΑIJ	AE	AF.	AG /	AH .	ΑI	AJA	K A	ALA	MA	NVA	WA	(PA	J AH	(AS	Al /	AU A	4V/	AVV A	ΧA	Y AZ	BA	BB	-
1	0	0	0) 1	1	0	0	1	0	0		0	1	0	0	0	1	0	0	1	0	0	1	0	0	1	0	0	0	0	0	1	0	0	0	0	0	1	0 (0 (0 (0	0 1	C	0	0	0	0	1	0 0	0 0	0	11	22	.%
2	0	1	0	0	Э		0	0	1	C	0	0		0	0	1	0	0	1	c	0	1	0	0	1	0	0	1	0	0	1	0	0	1	0	0	1	0 1	0	1 (0 0	0	1 (0 1			0	0	1	0 0	0 1	0	18	36	j %
3	1	0	0) 1	1	0	1	1	1	1		1	1	0	1	1	0	0	1	C	0	1	0	1	1	1	0	1	1	1	1	1	0	0	1	0	0	1	1	1	1	1	0 0	0 1	1	1	1	1	0	0	1 (0	31	62	:%
4																																										\perp													
5																																	┰	1	訷	5 幺	白	1+		目	= 7		<u>.</u>	= 7	5	<u>*</u>	ム ミ	귿	5 /	1 (<i>c</i> '	70/)		
6																								ï					L																	7	JJ '	, <u>L</u> E	到 `	• (O,	Z / (), _		
7																								L	Jρ	da	ıτ	е	H				涉	7	带;	か	角	程;	肖	さ	1	L7	び	い											
8																							Ľ																																
9																																																					1	道路	
10		初	期	配	置任	列																																															車両数	占有率	×
11			1							1							1						1						1						1		1			•	1					1	1				1		11	22	:%
12			1	1	1	1	1	1	1	1		1												1	1	- 1	- 1	- 1	1	1	1	1	1																				18	36	%
13							1	1	1	1		1		1	1	1	1	- 1					1	1	1	- 1	1	- 1			1	1	1	1	1				1		•	1	1 1	1 1	- 1	1	1		1	1			31	62	:%

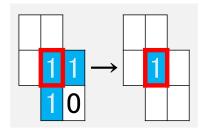
- 交通流・交通渋滞シミュレーション(3)
 - 車両の進行規則
 - 1. 速度は一定で,前方が空いている時は前へ進む
 - 2. 前方が詰まっている(<u>渋</u>滞)時は<u>その場に留まる</u>が, <u>右横と</u> 右前が両方空いていれば<u>車線変更(右前へ移動</u>)する

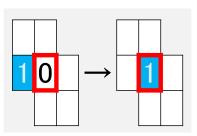

※車線変更は右車線へのみ

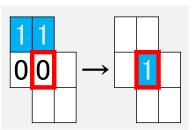

- 2次元セルオートマトンで実現
 - 道路上に車両が居る状態を1,居ない状態を0とする
 - 例)2車線

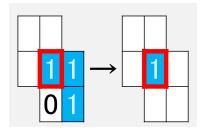



2次元セルオートマトンだが, 近傍は「ノイマン近傍+斜め2カ所」とする ※[6543210]順の[7桁の2進数]で表現

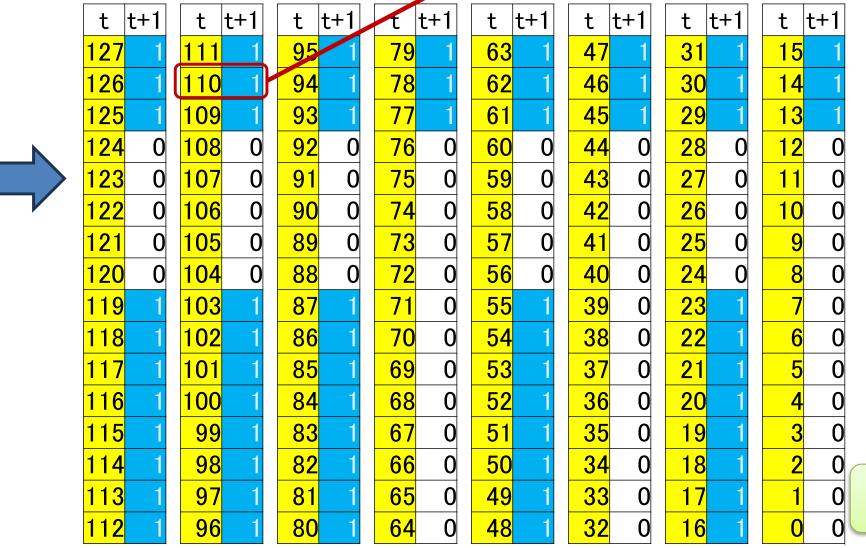

- 傍は つる で表現 「注目セル」
- 交通流・交通渋滞シミュレーション(3)
 - 「車両の進行規則」を2次元セルオートマトンの「ルール」へ

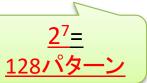






変化なし ※<u>空きのまま</u>


前方が空いている ので<u>前方に進む</u>


前方が詰まっている (渋滞)が、右車線が 空いているので 右前に車線変更して 進む

前方(右近傍)も右車線 も詰まっている(渋滞) ので「注目セル」の車は 動かない(動けない) <u>2⁷=128パターンを</u> 8つに分類

空欄の状態は [0 / 1] どちらの場合も含む

- 交通流・交通渋滞シミュ
- 前ページの渋滞で t t+1
 例)動けないに該当 11
 110(=(1101101)₂) 0 1 1 → 1
 - 「車両の進行規則」を 2次元セルオートマトンの「ルール」へ

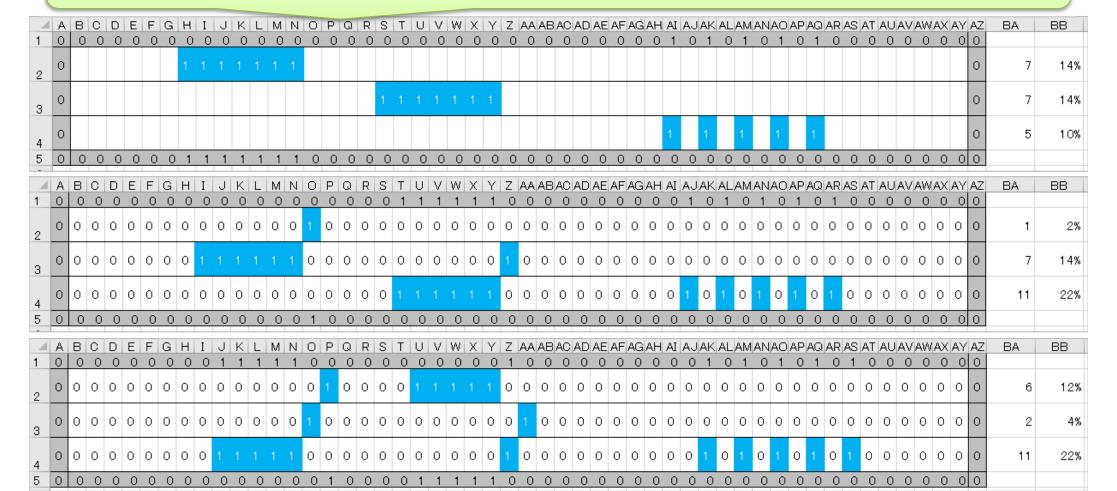
- 交通流・交通渋滞シミュレーション(3)
 - 実行例1)3車線道路(上下も周期境界条件)

例は<u>3車線</u>だが、 <u>2車線</u>で実行す れば左右への車 線変更になる

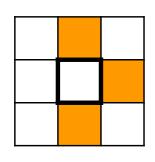
右への車線変更が無限に可能

※初期配置セル[B16:AY18] で開始し、21ステップ後

初期配置では各車線の道路占有率が異なるが、右への車線変更によって、全車線の占有率がほぼ同じで進むようになる(3車線の合計占有率は154%) 各車線の車両占有率はいずれも50%を超えるので、全車線で一部渋滞は解消されない


A	В	С	D	Е	F	G	Н	I	J	K	L	. N	4 N	1 (O F	, C)	₹ 8	3 .	Τ	U	٧	W	Х	Υ	Z	AA.	AB,	AC.	AD,	AΕ,	AF/	4G/	λΗJ	AI A	AUA	KΑ	LAN	//AN	NAC	AF	AQ	AR	AS	AT	ΑU	ΑV	AW,	AX/	AY A	Z E	3A	BB
1	1	0	1	0	1	0	1	0	1	С) 1	1 (0	1	0	1 (0_	1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1 '	1 0) 1	C	1	0	0	1	0	1	0	1	0	1 1			
1	0	1	0	1	0	1	0	1	0	1	0	1	()	1 1	С)	()	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0 0	0	1 0	1	0	1	1	0	1	0	1	0	1	0	0	1 (25	50
0	1	0	1	0	1	0		0	1	0	1	c) 1		() 1	0	0 1		0	1	0	1	0	1	0		1	0	1	0	1	0	1	0	1	0 0	1	0	1	0	1	0	1	0			0	1	0 1		26	5:
1	1	0	1	0	1	0	1	0	1	0	1	С) 1		0 1	С)	1		0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1 (0	1 1	0	1	0	1	0	0	1	0	1	0	1	0	1 1		26	5
1	0) 1	0	1	0	1	0	1	0	1	(o .	1	0	1	1 (0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	0	1 (0 1	C) 1	1	0	1	0	1	0	1	0	0	1 (5		
Г											Т	Т	Т	Т				Т																				Т		Т													
																						u	pc	la:	te																												
																						~	P		•																												
																					\Box					_																									1		道路
	初	期	置5	列																																															車両	5数	占有
	1						1					1	1							1		1	1			1						1		1			1						1	1					1	1		15	3
	1																													1						1 1							1		1							27	5
										1			1												1							1			-	1		1														31	6
	1																			1	1		1	1		1	1		1	1		1	1		1	1	1	- 1		1	1		1	1		1	1		1	1		23	٠
	1	1	1		1	1	1		1	1	1		1		1 1		-	1		1		1	1	1													1	1	1		1	1	1		1	1	1					27	5
	4	- 4	4	7	4			-																	7	4		4	4	-	7		7														1			\neg		27	5

- 交通流・交通渋滞シミュレーション(3)
 - 実行例2)3車線道路(上下も周期境界条件)


例は<u>3車線</u>だが、 <u>2車線</u>で実行す れば左右への車 線変更になる

右への車線変更が無限に可能

初期配置(上)から時刻を1ずつ進めたところ(中/下) 上(左)車線,中央車線の渋滞は,先頭車以外は下(右)車線へ一斉に車線変更する様子

参考文献

[1] 北栄輔・脇田佑希子「Excelで学ぶセルオートマトン」 オーム社(2011)

[2] 岡 瑞起他「作って動かすALife」オライリージャパン(2018)

[3] 岡 瑞起「ALIFE | 人工生命」BNN(2022)