
知の探究

2025年12月8日（月）

Outline
1. 線形最適化とは？

1. 線形最適化問題(Linear Optimization Problem)
2. 線形最適化問題をソルバー(solver)を利用して解く

 Excel solver, gurobi, cplex, python-MIP
2. 様々な最適化問題を線形最適化で解く

1. 輸送問題

2. 最大重みマッチング問題

3. 最短路問題

4. 最大流問題

5. 最小カット問題

6. 最小費用流問題

1. 線形最適化とは？

1. 線形最適化問題(Linear Optimization Problem)
– 線形（1次）等式・不等式系であらわされる条件のもとで，線形
（1次）の目的関数を最大・最小化する形式の最適化問題2𝑥ଵ ൅ 𝑥ଶ ൅ 2𝑥ଷ ൅ 𝑥ସ ൅ 3𝑥ହ𝑥ଵ ൅ 2𝑥ଷ ൅ 𝑥ହ ≥ 59𝑥ଵ ൅ 2𝑥ଶ ൅ 𝑥ସ ൅ 4𝑥ହ ≥ 1𝑥ଶ ൅ 5𝑥ଷ ൅ 𝑥ହ ≥ 3𝑥ଵ ൅ 3𝑥ଷ ൅ 𝑥ହ ≥ 2𝑥ଵ, 𝑥ଶ, 𝑥ଷ, 𝑥ସ, 𝑥ହ ≥ 0

min.
s.t.

目的関数 objective function

制約条件 constraints

非負条件 nonnegativity

• 線形計画問題を解くための主な手法 algorithm
– 単体法 simplex method, G.B.Dantzig(1947)
– 内点法 interior point method, N.Karmarkar (1984)
– （楕円体法 ellipsoid method, Yudin, A.S.Nemirovskii(1976), Khachiyan(1979)）

2. 線形最適化問題をソルバー(solver)を利用して解く

1. モデルをExcelに記述し，ソルバーを利用して解く

2. モデルを LP file に記述し，gurobi で解く

3. モデルを LP file に記述し，cplex で解く

4. Google Colaboratory と Python-MIP を利用して解く

etc.

1. 線形最適化とは？

1-2-1. Excelに記述しソルバーで解く
•準備：Excelソルバーを使える状態にする設定方法

① メニューから[ファイル]-[オプション]を選択 Excelの初期状態では
ソルバーを使えない

④[ソルバーアドイン]
にチェック☑
⑤[OK]クリック

→ [アドイン]d-box が開く
③[設定]をクリック

→ [Excelのオプション]d-box が開く（※d-box = dialog box）

②[アドイン]を選択

1-2-1. Excelに記述しソルバーで解く
•ソルバーの起動・設定・実行

起動 = メニューから[データ]-[ソルバー]を選択

→ [ソルバーの
パラメーター]
d-box が開く

目的関数の設定

変数(セル)の設定

制約条件の設定

手法の選択
オプション設定

実行(計算開始)

行列・ベクトル
による定式化

の表記

1-2-1. Excelに記述しソルバーで解く
•例）線形最適化問題をExcelシートに記述2𝑥ଵ + 𝑥ଶ + 2𝑥ଷ + 𝑥ସ + 3𝑥ହ𝑥ଵ + 2𝑥ଷ + 𝑥ହ ≥ 59𝑥ଵ + 2𝑥ଶ + 𝑥ସ + 4𝑥ହ ≥ 1𝑥ଶ + 5𝑥ଷ + 𝑥ହ ≥ 3𝑥ଵ + 3𝑥ଷ + 𝑥ହ ≥ 2𝑥ଵ, 𝑥ଶ, 𝑥ଷ, 𝑥ସ, 𝑥ହ ≥ 0

min.
s.t.

𝑚𝑖𝑛. 𝒄்𝒙𝑠. 𝑡.𝐴𝒙 ≥ 𝒃𝒙 ≥ 0 𝒄் = 2 1 2 1 3𝐴 = 1 0 2 0 19 2 0 1 40 1 5 0 11 0 3 0 1 ,𝒃 = 5132
変数（解）用のセル

定式化を記述した部分

1-2-1. Excelに記述しソルバーで解く
• Excelシート上の内容をソルバーへ設定する

ソルバーの設定が
全て終了した所

非負条件

[シンプレックスLP]を選ぶ

[解決]ボタンを押すと求解を開始

＜制約条件の追加手順＞
1. [追加]をクリック
2. 制約条件を設定し[OK]クリック

1-2-1. Excelに記述しソルバーで解く
•結果がExcelシート上に反映される

最適解(Optimal Solution)
が見つかった場合の
メッセージ

求解が終わると，
[ソルバーの結果]d-box が開き，
シート上に結果が反映される
（※前頁と比較せよ）

オプションを設定して
[OK]で終了

• 線形最適化問題の定式化（例）

• 定式化を LP file 形式で記述

1-2-2. LP file に記述し gurobi で解く

minimize
2 x1 + x2 + 2 x3 + x4 + 3 x5

subject to
x1 + 2 x3 + x5 >= 5
9 x1 + 2 x2 + x4 + 4 x5 >= 1
x2 + 5 x3 + x5 >= 3
x1 + 3 x3 + x5 >= 2

end

目的関数 objective function

制約条件 constraints

2𝑥ଵ + 𝑥ଶ + 2𝑥ଷ + 𝑥ସ + 3𝑥ହ𝑥ଵ + 2𝑥ଷ + 𝑥ହ ≥ 59𝑥ଵ + 2𝑥ଶ + 𝑥ସ + 4𝑥ହ ≥ 1𝑥ଶ + 5𝑥ଷ + 𝑥ହ ≥ 3𝑥ଵ + 3𝑥ଷ + 𝑥ହ ≥ 2𝑥ଵ, 𝑥ଶ, 𝑥ଷ, 𝑥ସ, 𝑥ହ ≥ 0
min.
s.t.

目的関数 objective function

制約条件 constraints

非負条件 nonnegativity

※LP file 形式では，非負条件は記述しない
（変数は自動的に全て非負と設定される）

• 定式化をLP file 形式で記述

 マイドキュメント（K:ドライブ）に専用のフォルダ[LP]を作成する

 テキストエディタ（TeraPadやメモ帳）を起動する

 定式化をLP file 形式で記述する

 フォルダ[LP]内に保存する．その際，ファイルの種類を「全て
（*.*）」にし，ファイル名&拡張子を半角英数で「***.lp」と記述

1-2-2. LP file に記述し gurobi で解く

※ファイルの種類を全てに変更し忘れて「テキストファイル（*.txt）」で保存した場合，ファイル名が
「***.lp.txt」となるので，ファイル名の変更で最後の部分「.txt」を削除し，「***.lp」とする

minimize
2 x1 + x2 + 2 x3 + x4 + 3 x5

subject to
x1 + 2 x3 + x5 >= 5
9 x1 + 2 x2 + x4 + 4 x5 >= 1
x2 + 5 x3 + x5 >= 3
x1 + 3 x3 + x5 >= 2

end

注1）数値・変数・記号の間に「半角スペース」が必要
（※空白のない文字を1つの単語と認識するため）

注2）非負条件は記述しない（変数はデフォルトが非負

のため）．非負条件のない変数（フリー変数）を使う場
合は，2つの非負変数の差に置き換える．即ち，フリー
変数の x は x = xp – xm (xp, xm≧0) と置き換える

注） 「***」は半角英数で好きな名前

• LP file を gurobi で解く
「コマンドプロンプト command prompt」を起動する

 [Windows]+[R] キーを押し，[ファイル名を指定して実行] を起動する

 [cmd] と記述し [Enter] キーを押す

→ [コマンドプロンプト] が起動

「lpファイル」が保存されているフォルダへ移動する
 コマンドプロンプト上で [K:] と記述して [Enter] キーを押す

→ K ドライブへ移動する

 コマンドプロンプト上で [cd LP] と記述して [Enter] キーを押す

→ [LP]フォルダへ移動する（※ cd = change directory）

1-2-2. LP file に記述し gurobi で解く

• gurobiで解く

gurobi> m=read(“***.lp”)

gurobi> m.optimize()

gurobi> m.printAttr(‘X’)
gurobi> m.ObjVal

gurobi> m.write(“***.sol”)

gurobi> quit()

1-2-2. LP file に記述し gurobi で解く

LP file の読込

問題を解く

解の表示（最適解 & 最適値）

解をファイルに保存

gurobiの終了

※コマンドプロンプト上で[gurobi]と記述して [Enter]キー押す
→ gurobi が起動する

• cplexで解く

CPLEX> read ***.lp

CPLEX> d p a

CPLEX> opt

CPLEX> d so v –
CPLEX> d so obj

CPLEX> write ***.sol

CPLEX> quit

1-2-3. LP file に記述し cplex で解く

d p a = display problem all

opt = optimize

d so v = display solution variables

LP file の読込

問題を解く

解をファイルに保存

問題の表示（確認）

※コマンドプロンプト上で[cplex]と記述して [Enter]キー押す
→ cplex が起動する

cplex の終了

解の表示（最適解 & 最適値）

• Google Colaboratory を開く

 利用方法（初回）

(1) google アカウントにログインし，google drive へ移動

(2) 「新規」－「その他」－「アプリを追加」を選択

(3) 「Google Colaboratory」 を追加

 利用方法（2回目以降）

(1) google アカウントにログインし，google drive へ移動

(2) 「新規」－「その他」－「Google Colaboratory」を選択

 ファイル名は default では [Untitled0.ipynb] となっている．変更可．

 ファイルは google drive に自動保存される．一度作成したら，次回以降は，
google drive 内のファイル [***.ipynb] を選択して，開くことができる

1-2-4. Python-MIP で解く

※この拡張子名は IPython Notebook の略で，Jupyter Notebook 専用の
ファイルということ．IPython は Python を対話的に実行する環境の1つで，
Jupyter Notebook とは，それをブラウザ上で動かす実行環境

• Python-mip インストール

• 線形最適化問題の記述1（係数の設定）
– 左上の[＋コード]ボタンを押して，次の記述欄（[コード]欄）を追加する

– 以下の通りに記述し，左の三角ボタンを押して「実行」する

1-2-4. Python-MIP で解く

[コード]の欄にこのように記入
左の三角ボタンを押して「実行」

（このコードの下に，メッセージが
表示されるので終わるまで待つ）

例題の線形最適化問題について
c = […] ：目的関数の係数ベクトル
b = […] ：制約条件の右辺ベクトル
A = […] ：制約条件の左辺係数行列
J = range(len(c)) ：列の添え字の範囲
I = range(len(b)) ：行の添え字の範囲

※ len(…) は … のサイズlengthを返す関数
を設定しているところ

• 線形最適化問題の記述2（定式化と求解）
– 左上の [＋コード] をクリックして，以下のコードを記述する欄を追加する

– そこに以下の通りにコードを記述した後，左三角ボタンで実行する

1-2-4. Python-MIP で解く

実行すると，結果を表示

※”C” = continuous（連続）
連続変数とするということ
※ lb = lower bound（下限）
非負条件に該当する．
default は lb=0 なので，記
述しなくても可

※ ＃より右はコメント

（プログラムとは関係ない，
人間用の記述）

最適解
と

最適値
の表示

定式化

• 様々な最適化問題を線形最適化で解く

1. 輸送問題

2. 最大重みマッチング問題

3. 最短路問題

4. 最大流問題

5. 最小カット問題

6. 最小費用流問題

2. 多様な最適化問題

問）文教重工には3工場（湘南・越谷・旗の台）あり，製品を供給（製品
生産量）できる

顧客は5人いて，需要（製品を欲しい量）がある

3工場から5人の顧客それぞれへの単位あたり輸送コストは表の通り

輸送コストが最小となる配送計画をたてよ

輸送問題

湘南工場(S)

越谷工場(K)

旗の台工場
(H)

A

需要 50 80 60 70 40
供給 工場＼顧客 A B C D E

120 湘南(S) 3 2 4 5 8
130 越谷(K) 5 6 5 3 2
70 旗の台(H) 7 3 1 2 3

B

C

D

E

 工場の供給量
 顧客の需要量
 工場から顧客へ製品を1単位
配送するのにかかる輸送コスト表

• 線形最適化 Linear Optimization
• 問題のモデル化（定式化）

– 目的：輸送コストを最小

– 条件1：顧客の需要を満たす

– 条件2：工場の出荷量は供給量まで

– 条件3：輸送量は非負

• 変数設定

輸送問題の定式化

需要 50 80 60 70 40
供給 工場＼顧客 A B C D E

120 湘南(S) 3 2 4 5 8
130 越谷(K) 5 6 5 3 2
70 旗の台(H) 7 3 1 2 3

目的関数 objective function

制約条件 constraints

非負条件 nonnegativity

xij ： 工場i →顧客jへの輸送量

ex) xSB = 30 : 湘南工場(S)から
顧客Bへ製品を30輸送する
その輸送コスト： 2×30=60

minimize
3 xSA + 2 xSB + 4 xSC + 5 xSD + 8 xSE
+ 5 xKA + 6 xKB + 5 xKC + 3 xKD + 2 xKE
+ 7 xHA + 3 xHB + 1 xHC + 2 xHD + 3 xHE

subject to
xSA + xKA + xHA = 50
xSB + xKB + xHB = 80
xSC + xKC + xHC = 60
xSD + xKD + xHD = 70
xSE + xKE + xHE = 40
xSA + xSB + xSC + xSD + xSE <= 120
xKA + xKB + xKC + xKD + xKE <= 130
xHA + xHB + xHC + xHD + xHE <= 70

end

• 問題の定式化

輸送問題
需要 50 80 60 70 40

供給 工場＼顧客 A B C D E

120 湘南(S) 3 2 4 5 8
130 越谷(K) 5 6 5 3 2
70 旗の台(H) 7 3 1 2 3

目的関数 objective function

制約条件 constraints

非負条件 nonnegativity

※LPファイル形式では書かない
ファイル名「ex.lp」で保存（LPファイル）

輸送問題の求解
• Excelで解く（セル記述&ソルバー設定）

ソルバーの設定が
全て終わった状態

輸送問題の求解
• Excelソルバーで解いた結果

湘南工場(S)

越谷工場(K)

旗の台工場
(H)

A

B

C

D

E

40

10

80

60
40

60
10

120

130

70

50

80

60

70

40

3
2

5

3
2
1
2

最適解・最適値

の評価・検証

• gurobiで解く

Y:¥LP>gurobi [Enter]

gurobi> m=read(“ex.lp”)

gurobi> m.optimize()

gurobi> m.printAttr(‘X’)
gurobi> m.ObjVal

輸送問題の求解

LP file の読込

問題を解く

解の表示（最適解 & 最適値）

輸送問題の求解

湘南工場(S)

越谷工場(K)

旗の台工場
(H)

A

B

C

D

E

50

70

70
40
10

60

120

130

70

50

80

60

70

40

3
2

3

2

3

16.700000000e+02
= 6.7×102

= 670

※最適値の表記について

• gurobiで解いた結果

最適解・最適値

の評価・検証

• cplexで解く

Y:¥LP>cplex [Enter]

CPLEX> read ex.lp

CPLEX> d p a

CPLEX> opt

CPLEX> d so v –
CPLEX> d so obj

輸送問題の求解
d p a = display problem all

opt = optimize

d so v = display solution variables

LP file の読込

問題を解く

問題の表示（確認）

解の表示（最適解 & 最適値）

輸送問題の求解

湘南工場(S)

越谷工場(K)

旗の台工場
(H)

A

B

C

D

E

40

10

80

60
40

60
10

120

130

70

50

80

60

70

40

3
2

5

3
2
1
2

• cplexで解いた結果

6.700000000e+02
= 6.7×102

= 670

※最適値の表記について

最適解・最適値

の評価・検証

• Python-MIP で解く

– Python-mip インストール

–輸送問題の記述1：係数の設定

輸送問題の求解

輸送問題の最適化について
d = […] ：顧客の需要ベクトル
s = […] ：工場の供給ベクトル
C = […] ：輸送コスト行列
J = range(len(d)) ：列の添え字の範囲
I = range(len(s)) ：行の添え字の範囲

※ len(…) は … のサイズlengthを返す
関数を設定しているところ

[コード]の欄にこのように記入
左の三角ボタンを押して「実行」

（このコードの下に，メッセージが
表示されるので終わるまで待つ）

–記述2：
定式化/求解

実行結果

輸送問題の求解

最適解
と

最適値
の表示

定式化

求解

実行結果

–輸送問題

• 製品：s種類

• 工場：m箇所，各製品を製造（供給量がそれぞれ異なる）

• 顧客：n人，各製品の需要がある

• 輸送コスト：工場から各顧客への単位辺り輸送コスト（製品
数にのみ依存し，種類によらない）

1. 上記の問題を具体的な数値で適当につくれ

2. 線形最適化問題に定式化せよ

3. ソルバーで最適解と最適値を求めよ

演習：輸送問題の作成・定式化・求解

問）6人の男女がいて，ペアを組む．互いにペアを組む場合の相性を
数値化した．相性が最大になるマッチングを求めたい

最大重みマッチング

1

2

3

4

5

6

1

2

3

4

5

6

wij 1 2 3 4 5 6

1 3 1 2 5 6 4

2 1 3 5 4 6 2

3 3 6 1 5 4 2

4 4 6 3 2 5 1

5 1 6 2 5 4 3

6 3 6 5 1 2 4

ペアの相性（重み）

• 0-1整数最適化 0-1 Integer Optimization
• 問題のモデル化（定式化）

– 目的：重み和の最大化

– 条件1：男が組む相手は1人以下

– 条件2：女が組む相手は1人以下

• 変数設定

• 0-1変数 xij = ൝1 …枝 (𝑖, 𝑗) を使う0 … 枝(𝑖, 𝑗)使わない

最大重みマッチングの定式化

wij 1 2 3 4 5 6

1 3 1 2 5 6 4

2 1 3 5 4 6 2

3 3 6 1 5 4 2

4 4 6 3 2 5 1

5 1 6 2 5 4 3

6 3 6 5 1 2 4

ペアの相性（重み）

• 0-1整数最適化 0-1 Integer Optimization
• 問題のモデル化（定式化）

最大重みマッチングの定式化

wij 1 2 3 4 5 6

1 3 1 2 5 6 4

2 1 3 5 4 6 2

3 3 6 1 5 4 2

4 4 6 3 2 5 1

5 1 6 2 5 4 3

6 3 6 5 1 2 4

maximize
3 x11 + 1 x12 + 2 x13 + 5 x14 + 6 x15 + 4 x16

+ 1 x21 + 3 x22 + 5 x23 + 4 x24 + 6 x25 + 2 x26
+ …
+ 3 x61 + 6 x62 + 5 x63 + 1 x64 + 2 x65 + 4 x66
subject to

x11 + x12 + x13 + x14 + x15 + x16 ≦1
…

x61 + x62 + x63 + x64 + x65 + x66 ≦1

x11 + x21 + x31 + x41 + x51 + x61 ≦1
…

x16 + x26 + x36 + x46 + x56 + x66 ≦1

xij∈{0, 1} (i=1,…,6, j=1,…,6)

条件1

条件2

ペアの相性（重み）

最大重みマッチングの求解

• Excelソルバーで解く（セル記述）

最大重みマッチングの求解

• Excelで解く

（ソルバー設定）

最大重みマッチングの求解
• Excelソルバーで解いた結果

1

2

3

4

5

6

1

2

3

4

5

6

6

6

5

5

4

4

最適解・最適値

の評価・検証

Objective Value:
6+5+6+4+5+4=30

最大重みマッチングの求解

• gurobi & cplex で
解く準備

– lpファイル
[mwm_ex1.lp]

maximize
3 x11 + 1 x12 + 2 x13 + 5 x14 + 6 x15 + 4 x16

+ 1 x21 + 3 x22 + 5 x23 + 4 x24 + 6 x25 + 2 x26
+ 3 x31 + 6 x32 + 1 x33 + 5 x34 + 4 x35 + 2 x36
+ 4 x41 + 6 x42 + 3 x43 + 2 x44 + 5 x45 + 1 x46
+ 1 x51 + 6 x52 + 2 x53 + 5 x54 + 4 x55 + 3 x56
+ 3 x61 + 6 x62 + 5 x63 + 1 x64 + 2 x65 + 4 x66
subject to
x11 + x12 + x13 + x14 + x15 + x16 <= 1
x21 + x22 + x23 + x24 + x25 + x26 <= 1
x31 + x32 + x33 + x34 + x35 + x36 <= 1
x41 + x42 + x43 + x44 + x45 + x46 <= 1
x51 + x52 + x53 + x54 + x55 + x56 <= 1
x61 + x62 + x63 + x64 + x65 + x66 <= 1

x11 + x21 + x31 + x41 + x51 + x61 <= 1
x12 + x22 + x32 + x42 + x52 + x62 <= 1
x13 + x23 + x33 + x43 + x53 + x63 <= 1
x14 + x24 + x34 + x44 + x54 + x64 <= 1
x15 + x25 + x35 + x45 + x55 + x65 <= 1
x16 + x26 + x36 + x46 + x56 + x66 <= 1

binary
x11 x12 x13 x14 x15 x16
x21 x22 x23 x24 x25 x26
x31 x32 x33 x34 x35 x36
x41 x42 x43 x44 x45 x46
x51 x52 x53 x54 x55 x56
x61 x62 x63 x64 x65 x66
end

binary変数（0-1変数）設定

条件1

条件2

最大重みマッチングの求解

• gurobiで解く

最大重みマッチングの求解

• gurobiで解いた結果

1

2

3

4

5

6

1

2

3

4

5

6

6

6

5

5

4

4

最適解・最適値

の評価・検証wij 1 2 3 4 5 6

1 3 1 2 5 6 4

2 1 3 5 4 6 2

3 3 6 1 5 4 2

4 4 6 3 2 5 1

5 1 6 2 5 4 3

6 3 6 5 1 2 4

ペアの相性（重み）

Objective Value:
6+5+6+4+5+4=30

最大重みマッチングの求解

• cplexで解く

最大重みマッチングの求解

• cplexで解いた結果

1

2

3

4

5

6

1

2

3

4

5

6

6

4

6

5

4

5

最適解・最適値

の評価・検証wij 1 2 3 4 5 6

1 3 1 2 5 6 4

2 1 3 5 4 6 2

3 3 6 1 5 4 2

4 4 6 3 2 5 1

5 1 6 2 5 4 3

6 3 6 5 1 2 4

ペアの相性（重み）

Objective Value:
4+6+6+4+5+5=30

• Python-MIP で解く

– Python-mip をインストール（Colaboratory最初に毎回必要）

最大重みマッチングの求解

最大重みマッチングの求解
– MWMの記述1

問題作成/描画

問題の作成
（グラフ定義）
（係数設定）

グラフ描画
の準備

グラフ描画

– MWMの記述1：実行結果

最大重みマッチングの求解

最大重みマッチングの求解

最適解
と

最適値
の表示

定式化

※注：Python-MIPを利用して0-1整数線形最適化に定式化して解いているが，NetworkX の
maximum_matching(G) 等で解いても良い

– MWMの記述2：定式化/求解/実行結果

求解

実行結果

– MWMの記述3：結果をグラフで描画

最大重みマッチングの求解

wij 1 2 3 4 5 6

1 3 1 2 5 6 4

2 1 3 5 4 6 2

3 3 6 1 5 4 2

4 4 6 3 2 5 1

5 1 6 2 5 4 3

6 3 6 5 1 2 4

ペアの相性（重み）

Objective Value:
6+5+5+4+6+4=30

最短路問題 shortest path problem
• 問）グラフG=(V,E)と枝上のコスト（cost）が与えられている．スタート

地点（点1）からゴール地点（点9）まで，コストの総和が最小となる
路（最短路）を求めたい

1

2

3

9

8

7

6

5

4

s

t

3
5

2

2

5

2

1

3
2

1

2

1

3

3

3
5

• 変数設定

• 0-1変数 xij = ൝1 …枝 (𝑖, 𝑗) を通る0 … 枝(𝑖, 𝑗)を通らない

最短路問題の定式化
• 0-1整数最適化法によるモデル化（定式化）෍ 𝑐௜௝𝑥௜௝(௜,௝)∈ா෍𝑥௜௝௝∈௏ −෍𝑥௝௜௝∈௏ = ቐ 10−1𝑥௜௝ ∈ ሼ0,1ሽ

min.

s.t.

制約式は， 「点iからの流出量の和」と「点iへの流入量の和」との差に関するもので
点iがスタート地点（i=s）なら1, ゴール地点（i=t）なら-1, それ以外なら0とする
（スタート点は流出のみで1-0=1，途中点は通る時1-1=0，通らない時0-0=0，ゴール点は流入
のみで0-1=-1ということ．ただし，この制約だけだとスタート点3-2=1，途中点3-3=0, ゴール点
2-3=-1 等も実行可能となるが，目的関数が最小化であることより排除される）

(i=s)
(∀i∈V＼{s,t})
(i=t)

点iからの流出量の和 点iへの流入量の和

0-1変数xijは，枝(i,j)∈Eについて，
経路として使うなら1，使わないなら0

(∀(i, j)∈E)

i

s

t

最短路問題の求解

• Excelソルバーで解く（セル記述）

最短路問題の求解

• Excelで解く

（ソルバー設定）

最短路問題の求解

• Excelソルバー
で解いた結果

1

2

3

9

8

7

6

5

4

s

t

3
5

2

2

5

2

1

3
2

1

2

1

3

3

3
5

最適解・最適値

の評価・検証

optimal solution:
[1]→[3]→[5]→[8]→[9]

Objective Value:
2+2+1+3=8

最短路問題の求解

• gurobi & cplex で
解く準備

– lpファイル
[sp_ex1.lp]

minimize
3 x12 + 2 x13 + 5 x15 + 2 x24 + 5 x25 + 2 x35

+ 1 x36 + 3 x45 + 2 x47 + 1 x56 + 2 x57 + 1 x58
+ 3 x68 + 3 x79 + 5 x87 + 3 x89

subject to
x12 + x13 + x15 = 1
x24 + x25 - x12 = 0
x35 + x36 - x13 = 0
x45 + x47 - x24 = 0
x56 + x57 + x58 - x15 - x25 - x35 - x45 = 0
x68 - x36 - x56 = 0
x79 - x47 - x57 - x87 = 0
x87 + x89 - x58 - x68 = 0
-x79 - x89 = -1

binary
x12 x13 x15
x24 x25
x35 x36
x45 x47
x56 x57 x58
x68
x79
x87 x89

end

最短路問題の求解

• gurobiで解く

• 解いた結果
optimal solution:

[1]→[3]→[5]→[8]→[9]

Objective Value:
2+2+1+3=8

最短路問題の求解

• cplexで解く

• 解いた結果
optimal solution:

[1]→[3]→[5]→[8]→[9]

Objective Value:
2+2+1+3=8

• Python-MIP で解く

– Python-mip をインストール（Colaboratory最初に毎回必要）

最短路問題の求解

– SPの記述1：問題作成（グラフの定義）

–実行結果

最短路問題の求解

– SPの記述2：定式化/求解/実行結果

最短路問題の求解

最適解
と

最適値
の表示

定式化

※注：Python-MIPを利用して0-1整数線形最適化に定式
化して解いているが，NetworkX の shortest_path(G,…) 等
で解いても良い

実行結果

求解

– SPの記述3：結果をグラフで描画

最短路問題の求解

Objective Value:
2+2+1+3=8

最大流問題 maximum flow problem
• 問）グラフG=(V,E)と枝(i,j)∈E上の容量（capacity） uij が与えられて

いる．スタート地点（点1）からゴール地点（点9）までものを流すと
き，流量が最大となる流れ（最大流）を求めたい

1

2

3

9

8

7

6

5

4

s

t

2
1

2

1

3

5

2

1
3

3

5

3

3

2

2
5

• 変数設定
• 実数変数 xij ：枝(i, j) に流す流量

最大流問題の定式化
• 線形最適化法によるモデル化（定式化）෍𝑥௦௝௝∈௏ −෍𝑥௝௦௝∈௏෍𝑥௜௝௝∈௏ −෍𝑥௝௜௝∈௏ = 00 ≤ 𝑥௜௝ ≤ 𝑢௜௝

max.

s.t.

1つ目の制約式は，流量保存則を表す．即ち，start/goal以外の任意の点iについて
「点iからの流出量の和」と「点iへの流入量の和」との差が0（流量保存）である
（s[start]/t[goal]は流量保存制約から除外されることに注意）

目的関数は点s[start]の「流出量の和と流入量の和の差」を最大化することとなる

(∀i∈V＼{s,t})

(∀(i, j)∈E)
点iからの流出量の和 点iへの流入量の和

実数変数xijは，
枝(i,j) ∈Eに流れる流量

i

s

最大流問題の求解

• Excelソルバーで解く（セル記述）

最大流問題の求解

• Excelで解く

（ソルバー設定）

最大流問題の求解

• Excelソルバー
で解いた結果

最適解・最適値

の評価・検証

Objective Value:
1+2+1=4

1

2

3

9

8

7

6

5

4

s

t

1/2
1/1

2/2

1/1

3

2/5

2

1
1/3

3

1/5

2/3

3

2/2

2/2
5

最大流問題の求解

• gurobi & cplex で
解く準備

– lpファイル
[mf_ex1.lp]

maximize
x12 + x13 + x15

subject to
x24 + x25 - x12 = 0
x35 + x36 - x13 = 0
x45 + x47 - x24 = 0
x56 + x57 + x58 - x15 - x25 - x35 - x45 = 0
x68 - x36 - x56 = 0
x79 - x47 - x57 - x87 = 0
x87 + x89 - x58 - x68 = 0

bound
x12 <= 2
x13 <= 2
x15 <= 1
x24 <= 1
x25 <= 3
x35 <= 5
x36 <= 2
x45 <= 1
x47 <= 3
x56 <= 3
x57 <= 5
x58 <= 3
x68 <= 3
x79 <= 2
x87 <= 5
x89 <= 2

end

最大流問題の求解

• gurobiで解く

• 解いた結果

最大流問題の求解

• cplexで解く

• 解いた結果

• Python-MIP で解く

– Python-mip をインストール（Colaboratory最初に毎回必要）

最大流問題の求解

– MFの記述1：問題作成（グラフの定義）

–実行結果

最大流問題の求解

– MFの記述2：定式化/求解/実行結果

最大流問題の求解
※注：Python-MIPを利用して0-1整数線形最適
化に定式化して解いているが，NetworkX の
maximum_flow(G,…) 等で解いても良い

最適解
と

最適値
の表示

定式化

実行結果

求解

– MFの記述3：結果をグラフで描画

最大流問題の求解

Objective Value:
1+1+2=4

最小カット問題 minimum cut problem
• 問）グラフG=(V,E)と枝(i,j)∈E上の容量（capacity） uij が与えられて

いる．スタート点（点1）を含む点集合をS，ゴール点（点9）を含む
点集合をTとし，点集合VをSとTに2分割したい．

1

2

3

9

8

7

6

5

4

s

t

S={1,2,3,6}

T={4,5,7,8,9}

STカット={(2,4),(2,5),(1,5),(3,5),(6,8)}，STカットの容量=13

2
1

2

1

3

5

2

1
3

3

5

3

3

2

2
5

SとTをまたぐ枝（Sの点→Tの点への出枝）の枝集合をSTカットとよぶ
容量が最小となるSTカットを求める問題を最小カット問題とよぶ

最小カット問題 minimum cut problem
• 問）グラフG=(V,E)と枝(i,j)∈E上の容量（capacity） uij が与えられて

いる．スタート点（点1）を含む点集合をS，ゴール点（点9）を含む
点集合をTとし，点集合VをSとTに2分割したい．

1

2

3

9

8

7

6

5

4

s

tS={1,2,3,6}

T={4,5,7,8,9}
2

1

2

1

3

5

2

1
3

3

5

3

3

2

2
5

• 変数設定

• 0-1変数yi ：点 i が集合Sに含まれるとき1，Tに含まれるとき0
• 0-1変数zij ：枝(i, j) がSTカットに含まれる枝なら1，違うなら0

ji𝑦௜ 𝑦௝𝑧௜௝(i, j)

最小カット問題の定式化
• 0-1整数最適化法によるモデル化（定式化）෍ 𝑢௜௝𝑧௜௝(௜,௝)∈ா𝑦௜ − 𝑦௝ ≤ 𝑧௜௝𝑦௦ = 1,𝑦௧ = 0𝑧௜௝ ∈ ሼ0,1ሽ𝑦௜ ∈ ሼ0,1ሽ

min.

s.t. (∀(i, j)∈E)

(∀(i, j)∈E)
(∀i∈V)

…①
…②

ji𝑦௜ 𝑦௝𝑧௜௝(i, j)S T

=1 =1 =0

枝(i,j)が
STカット
の場合

制約①の意味 𝑦௜ 𝑦𝒋 𝑧௜௝
1 1 → 0 or 1
1 0 → 1
0 1 → 0 or 1
0 0 → 0 or 1

𝑦௜ = 1, 𝑦௝ = 0
のときだけ𝑧௜௝ = 1にせよ

それ以外は自由（ただし，
目的関数より𝑧௜௝ = 0 に）

最小カット問題の定式化

• Excelへの記述

最小カット問題の定式化

• ソルバー設定

最小カット問題の求解

• Excelソルバー
で解いた結果

最適解・最適値

の評価・検証

Objective Value:
2+2=4

1

2

3

9

8

7

6

5

4

s

t

T={9}

2
1

2

1

3

5

2

1
3

3

5

3

3

2

2
5

S={1,2,3,
4,5,6,7,8}

最小カット問題の求解

• gurobi & cplex で
解く準備

– lpファイル
[mc_ex1.lp]

minimize
2 x12 + 2 x13 + x15 + x24 + 3 x25 + 5 x35 + 2 x36 + x45

+ 3 x47 + 3 x56 + 5 x57 + 3 x58 + 3 x68 + 2 x79 + 5 x87 + 2 x89
subject to
y1 - y2 - x12 <= 0
y1 - y3 - x13 <= 0
y1 - y5 - x15 <= 0
y2 - y4 - x24 <= 0
y2 - y5 - x25 <= 0
y3 - y5 - x35 <= 0
y3 - y6 - x36 <= 0
y4 - y5 - x45 <= 0
y4 - y7 - x47 <= 0
y5 - y6 - x56 <= 0
y5 - y7 - x57 <= 0
y5 - y8 - x58 <= 0
y6 - y8 - y68 <= 0
y7 - y9 - x79 <= 0
y8 - y7 - x87 <= 0
y8 - y9 - x89 <= 0
y1 = 1
y9 = 0

binary
x12 x13 x15 x24 x25 x35 x36 x45 x47
x56 x57 x58 x68 x79 x87 x89
y1 y2 y3 y4 y5 y6 y7 y8 y9

end

最小カット問題の求解

• gurobiで解く

• 解いた結果

最小カット問題の求解

• cplexで解く

• 解いた結果

• Python-MIP で解く

– Python-mip をインストール（Colaboratory最初に毎回必要）

最小カット問題の求解

– MCの記述1：問題作成（グラフの定義）

–実行結果

最小カット問題の求解

– MCの記述2：定式化/求解/実行結果

最小カット問題の求解
※注：Python-MIPを利用して0-1整数線形最
適化に定式化して解いているが，NetworkX
の minimum_cut(G,…) 等で解いても良い

最適解
と

最適値
の表示

定式化

実行結果

求解

– MCの記述3：結果をグラフで描画

最小カット問題の求解

Objective Value:
2+2=4

【補足】最大流と最小カットの関係
• 最大フロー・最小カット定理（max-flow min-cut theorem）

 th) 最大フローが存在するとき，

最大流量 ＝ 最小カット容量

（資料の例題では，[最大流量 4] ＝ [最小カット容量 4] で一致）

• 最大流問題を主問題(P)としたとき，最小カット問題が双
対問題(D)となる

最大フロー・最小カット定理は，双対定理の特殊ケース

• 双対定理（Duality Theorem）

 th) LPの主問題(P)と双対問題(D)がどちらも実行可能なら，い
ずれも最適解を持ち最適値が一致する

最小カット問題 minimum cut problem
• 演習）グラフG=(V,E) について，s=1, t=7 の最小カットを求めよ

1

2

3

7

6

5

4

s

t4
1

2

5

3 1

2

2

1

2

2
3

1

6

3

最小費用流問題minimum cost flow problem

• 例題
グラフG=(V,E)と枝(i,j)∈E上のコスト（cost） cij と容量（capacity） uij が与えられている
与えられた需要点の需要と供給点の供給量を満たすフローを考える
実行可能なフローflowのうちで費用最小となるものを求めよ

【演習】

1

3

4

10

9

8

7

6

5 需要点

LPに定式化して Excel Solver で求解せよ
（LPファイルで定式化を書くより，Excel の方が定式化が楽）

2/30

1/20

3/40

1/40

3/20

5/50

2/30

1/20
3/30

1/20

2/40
3/30

2/40

2/20

3/30

1/10

2

需要点

12

供給点

供給点

11

需要点2/50

50

60

35

45

30

4/40

2/20

1/10

2/40

最小費用流問題の定式化と求解

• 例題：定式化例෍ 𝑐௜௝𝑥௜௝(௜,௝)∈ா෍𝑥௜௝௝∈௏ −෍𝑥௝௜௝∈௏ = 𝑏௜0 ≤ 𝑥௜௝ ≤ 𝑢௜௝
min.

s.t.

流量保存制約①の右辺定数 bi の値は以下の通り
 供給点i∈V について bi=その点の供給量
 需要点i∈V について bi=－その点の需要量
 それ以外の点i∈V について bi=0（流量保存）

実数変数xijは，枝(i,j) ∈Eに流れる流量

(∀i∈V)

(∀(i, j)∈E)
点iからの流出量の和 点iへの流入量の和

…①

最小費用流問題の定式化

• Excelへの記述

最小費用流問題の定式化

• ソルバー設定

最小費用流問題の求解

• Excelソルバーで解いた結果

最小費用流問題の求解

• gurobi & cplex で解く準備

– lpファイル [mcf_ex1.lp]
minimize

2 x13 + 3 x14 + x23 + 2 x24 + x35 + 3 x36 + 5 x46 + 2 x47
+ x56 + 3 x58 + x67 + 2 x68 + 3 x69 + 2 x79
+ 4 x810 + x811 + 3 x812 + x98 + 2 x910 + 2 x911 + 2 x912

subject to
x13 + x14 = 50
x23 + x24 = 60
x35 + x36 - x13 - x23 = 0
x46 + x47 - x14 - x24 = 0
x56 + x58 - x35 = 0
x67 + x68 + x69 - x36 - x46 - x56 = 0
x79 - x47 - x67 = 0
x810 + x811 + x812 - x58 - x68 - x98 = 0
x910 + x911 + x912 - x69 - x79 = 0
-x810 - x910 = -35
-x811 - x911 = -45
-x812 - x912 = -30

bound
x13 <= 30
x14 <= 40
x23 <= 20
x24 <= 50
x35 <= 40
x36 <= 20
x46 <= 50
x47 <= 30
x56 <= 20
x58 <= 30
x67 <= 20
x68 <= 40
x69 <= 30
x79 <= 40
x810 <= 40
x811 <= 10
x812 <= 30
x98 <= 10
x910 <= 20
x911 <= 40
x912 <= 20

end

最小費用流問題の求解

• gurobiで解く

• 解いた結果

最小費用流問題の求解

• cplexで解く

• 解いた結果

• Python-MIP で解く

– Python-mip をインストール（Colaboratory最初に毎回必要）

最小費用流問題の求解

– MCFの記述1：問題作成（グラフの定義）

最小費用流問題の求解

– MCFの記述2：定式化/求解/実行結果

最小費用流問題の求解
※注：Python-MIPを利用して0-1整数線

形最適化に定式化して解いているが，
NetworkX の min_cost_flow(G,…) 等で解
いても良い

最適解
と

最適値
の表示

定式化

実行結果

求解

– MCFの記述3：結果をグラフで描画

最小費用流問題の求解

Objective Value:
2・30+3・20+…=1055

【補足】
• 最小費用流問題は，最短路問題と最大流問題を含む

最小費用流問題の定式化において以下の設定をすれば良い

スタート点i=s について， bs=1
ゴール点i=t について， bt=-1
それ以外の点i について， bi=0
全ての枝(i,j)の容量 uij=∞

最小費用流問題の定式化において以下の設定をすれば良い

スタート点i=s について， bs=f
ゴール点i=t について， bt=-f
それ以外の点i について， bi=0
スタート点からの枝(s,j)のコスト csj=1
それ以外の枝(i,j)のコスト cij=0

※この流量制約冗長（削除可）

※f = Σcsjxsj- Σcjsxjs

最短路問題

最大流問題

参考文献
1. 今野浩「線形計画法」日科技連（1987）
2. 藤田・今野・田邉「最適化法」岩波書店（1994）
3. 田村明久・村松正和「最適化法」共立出版（2002）
4. 坂和正敏「線形計画法の基礎と応用」朝倉書店（2012）
5. 小島・土谷・水野・矢部「内点法」朝倉書店（2001）
6. A. Schrijver: Theory of Linear and Integer Programming, John Wiley and Sons,

1986.
7. L.A. Wolsey: Integer Programming, John Wiley and Sons, 1998.
8. M. Conforti, G. Cornuejols and G.Zambelli: Integer Programming, Springer,

2014.
9. 久保幹雄, J.P.ペドロソ, 村松正和, A.レイス：あたらしい数理最適化, 近

代科学社,2012.
10. 久保幹雄, 小林和博, ⻫藤努, 並木誠, 橋本英樹：Python言語によるビジ

ネスアナリティクス, 近代科学社, 2016.

