A Mathematical Analysis of the Division Rules of Cities for Political Redistricting

> K. Hotta & T. Nemoto Faculty of Information and Communication Bunkyo University

Overview

- 1. The Election System in Japan
 - How Diet members were elected
- 2. Mathematical Approach for the Redistricting Problem
- 3. The Exceptional Divide Rules in Japan
- 4. Some Results & Proposals
- 5. Conclusions & Future Works

The Election System in Japan

Informs2007

The maximum population disparity

Informs2007

(Optimal) Redistricting Problem

Previous works in U.S.

Mehrotra, Johnson, Nemhauser (1998) obtained the optimal district (46cities, 6seats) by column generation technique.

(Optimal) Redistricting Problem

Redistricting problem

Do not divide a city

Disparity ratio ≤ 2

Contiguous

 $(\mathbf{3})$

Japan

constraint

constraint

Minimize

constraint ignore constraint (disparity=1)

U.S.

(Optimal) Redistricting Problem

Previous works in U.S.

Mehrotra, Johnson, Nemhauser (1998) obtained the optimal district (46cities, 6seats) by column generation technique.

Informs2007

Approach

Informs2007

Formulation

set partition type

Given appropriate subsets of cities, select k subsets partitioned pref.

min. u/l

s.t.
$$q_j x_j \le u \quad (j = 1, ..., |\beta|)$$

 $\alpha(1 - x_j) + q_j x_j \ge l \quad (j = 1, ..., |\beta|)$
 $\sum_{j=1,...,|\beta|} b_{ij} x_j = 1 \quad (i \in N)$
 $\sum_{j=1,...,|\beta|} x_j = m$
 $x_j \in \{0,1\} \quad (j = 1, ..., |\beta|)$

graph partition type

Given city adjacency graph, divide into k connected subgraphs min. u/ls.t. $l \le \sum_{i \in N} p_i z_{ik} \le u$ $(k \in M)$ $\sum_{i \in N} f(a) - \sum_{i \in N} f(a)$ $(i \in N, k \in M)$

$$\sum_{a \in \delta^{-}v_{i}^{k}} f(a) = \sum_{a \in \delta^{+}v_{i}^{k}} f(a) \quad (i \in N, k \in M)$$

$$f(a) \ge 0 \quad (a \in \overline{A})$$

$$f((s^{k}, v_{i}^{k})) = \beta y_{ik} \quad (i \in N, k \in M)$$

$$\sum_{i \in N} y_{ik} = 1 \quad (k \in M)$$

$$y_{ik} \in \{0,1\} \quad (i \in N, k \in M)$$

$$\sum_{a \in \delta^{-}v_{i}^{k}} f(a) = \beta z_{ik} \quad (i \in N, k \in M)$$

$$z_{ik} \le f((v_{i}^{k}, t_{i})) \quad (i \in N, k \in M)$$

$$\sum_{k \in M} z_{ik} = 1 \quad (i \in N)$$

$$z_{ik} \in \{0,1\} \quad (i \in N, k \in M)$$

Informs2007

Approach & Results

Results

Results (2006)

In Japan, the structural change has arisen from the municipal merger assistance plan

Research the effect of the Great Municipal Merger in Heisei Era

Informs2007

Informs2007

Optimal Districts [Japan type]

Optimal Districts $[\pm 5\%$ divide rule]

Optimal Districts [American type]

Informs2007

Proposal

But, too many to solve!

Proposal

ultimate apportion method to minimize disparity (2004)

ex) Tokyo-to

1+24.039, 1+LD, 1+SD, 1+AMD, 1+GMD, 1+HMD

- → 1+24=25, 1+25=26, 1+26=27, 1+22=23, 1+24=25, 1+24=25, 1+23=24
- \rightarrow We solve the districting prob. for 23, 24, 25, 26, or 27 seats

\rightarrow		seats	opt. upper	opt. lower
	Tokyo	23	574,244	499,178
	Tokyo	24	540,722	446,698
	Tokyo	25	536,000	421,504
	Tokyo	26	536,000	394,703
	Tokyo	27	536,000	376,789

Informs2007

Proposal

Solve the Knapsack-type Problem.

 $x_{ij} \in \{0,1\} \ (i \in \{1,\dots,47\}, j \in J)$

Informs2007

Conclusions

- We proposed the 300 optimal districts for the first time in Japan. The limit is 1.977. Consequently, we offered an index of *gerrymandering*.
- 2. We derived the ratios for each prob. apportioned by several methods. The minimum limit is **1.750**.
- 3. We proposed a new framework with the Knapsack type prob. The limit is **1.750**. We also proposed a new framework with the Knapsack type prob. called the ultimate apportion method to minimize disparity. The limit is **1.722**.
- We derived the ratios for each prob. with 280 ∼ 320 members and by several apportioned methods.
 The minimum limit is 1.704
- 5. We show the limit **2.153** in 2006 map.

Informs2007

Future works

• A main cause of the disparity is

Informs2007

Thank you!

Informs2007

Graph Partition type

Informs2007

Graph Partition type

Informs2007