A Mathematical Analysis of the Division Rules of Cities for Political Redistricting

K. Hotta \& T. Nemoto

Faculty of Information and Communication
Bunkyo University

Overview

1. The Election System in Japan

+ How Diet members were elected

2. Mathematical Approach for the Redistricting Problem
3. The Exceptional Divide Rules in Japan
4. Some Results \& Proposals
5. Conclusions \& Future Works

The Election System in Japan

The maximum population disparity

300 seats are elected from
Single-seat constituency system

300 constituencies (electoral districts)

In the current district
the largest pop. district
\# pop. $=558,947$
the smallest pop. district \# рор. $=270,743$

Districts planning process

1 st phase
Apportionment
to 47 prefectures

(Optimal) Redistricting Problem

${ }^{+}$Previous works in U.S.
$>$ Mehrotra,Johnson,Nemhauser(1998) obtained the optimal district(46cities, 6 seats) by column generation technique.

(Optimal) Redistricting Problem

Japan
constraint constraint

Minimize

Redistricting problem
(1) Contiguous
(2) Do not divide a city
(3) Disparity ratio ≤ 2

(2) Do not divide a city
(3) Disparity ratio ≤ 2
U.S.
constraint ignore \rightleftarrows Compactness constraint (disparity=1)

Kanagawa (city:49,district:18)
(Nemoto \& Hotta 2002)

South Carolina(city:46,district:6) (Mehrotra, Johnson\&Nemhauser 1998)

(Optimal) Redistricting Problem

\oplus Previous works in U.S.
$>$ Mehrotra,Johnson,Nemhauser(1998) obtained the optimal district(46cities,6seats) by column generation technique.

${ }^{+}$Previous works in Japan
$>$ Sakaguchi-Wada(2000) found opt.sol. (11 pref., $\leqq 5$ seats) by B.-and-B.

Osaka
65 cities
19 seats

Approach

+ Modeling

INPUT 300 seats	Apportionment	OUTPUT 47 apportioned	INPUT
			+ pop.
pop. of 47 pref.	Prob	seats	of cities
	by 1+LRM		

ex) 4 cities $\rightarrow 2$ districts

set partition type
graph partition type

0-1 IP modeled by both the set partition type and the graph partition type

Formulation

${ }^{+}$set partition type
Given appropriate subsets of cities, select k subsets partitioned pref.
min. u / l
s.t.

$$
\begin{aligned}
& q_{j} x_{j} \leq u \quad(j=1, \ldots,|\beta|) \\
& \alpha\left(1-x_{j}\right)+q_{j} x_{j} \geq l \quad(j=1, \ldots,|\beta|) \\
& \sum_{j=1, \ldots, \ldots, \beta \mid} b_{i j} x_{j}=1 \quad(i \in N) \\
& \sum_{j=1, \ldots,|\beta|} x_{j}=m \\
& x_{j} \in\{0,1\} \quad(j=1, \ldots,|\beta|)
\end{aligned}
$$

${ }^{+}$graph partition type
Given city adjacency graph, divide into k connected subgraphs
min. u / l

$$
\begin{array}{ll}
\text { s.t. } & l \leq \sum_{i \in N} p_{i} z_{i k} \leq u \quad(k \in M) \\
& \sum_{a \in \delta^{-v_{i}^{k}}} f(a)=\sum_{a \in \delta^{+} v_{i}^{k}} f(a) \quad(i \in N, k \in M) \\
& f(a) \geq 0 \quad(a \in \bar{A}) \\
& f\left(\left(s^{k}, v_{i}^{k}\right)\right)=\beta y_{i k} \quad(i \in N, k \in M) \\
& \sum_{i \in N} y_{i k}=1 \quad(k \in M) \\
& y_{i k} \in\{0, l\} \quad(i \in N, k \in M) \\
& \sum_{a \in \delta^{-} v_{i}^{k}} f(a)=\beta z_{i k} \quad(i \in N, k \in M) \\
Z_{i k} \leq f\left(\left(v_{i}^{k}, t_{i}\right)\right)(i \in N, k \in M) \\
& \sum_{k \in M} z_{i k}=1 \quad(i \in N) \\
Z_{i k} \in\{0,1\} \quad(i \in N, k \in M)
\end{array}
$$

Approach \& Results

\oplus Results
\(\xrightarrow[pop. of 47 pref.]{\substack{INPUT

300 seats}}\)\begin{tabular}{c}
Apportionment

Prob. $\mathbf{1 + L R M}$

$\underset{\text { seats }}{$

OUTPUT

47 apportioned

$\xrightarrow[\text { of cities }]{$

INPUT

+ pop.
\end{tabular}$}}$

ex) 4 cities $\rightarrow 2$ districts
 graph partition type

(28) Many cities instance (2)

+ several ideas

47 optimal sol. (the optimal districts plan)

Solved by
CPLEX9. 0 \&
OPL Studio 3.7

Results (2006)

In Japan, the structural change has arisen from the municipal merger assistance plan
\oplus Research the effect of the Great Municipal Merger in Heisei Era

Current divide Rule

\oplus What is a main cause of the disparity?
$>$ divide rule
$>$ population of a city is too big

$4 / 3 \times$
too big divide!

$>$ population of a district is too small

Optimal Districts [Japan type]

[^0]A Mathematical Analysis of the Dicision Rules of Cittes for Political Redistricting

Optimal Districts [$\mathbf{\pm 5 \%}$ divide rule]

Optimal Districts［American type］

大阪																												
神奈川																												
愛知																												
東京																												
埼玉																												
北海道																												
乒庫																												
千葉																												
福部																		1										
䗅野																												
鹿児島																												
茨城																												
岐寊																												
静盛																												
福島																1												
仙形																												
新渴																												
群馬																												
杤木																												
大分																												
宮城																												
石川																												
宮崎													1															
$\stackrel{\text { 秋田 }}{=}$																												
三重																												
嶌根																												
富山																												
長崎																												
䙾本嫒																												
愛喛																												
奈良										1																		
宸手																												
和歌山																												
香川																												
鳥取					1																						$4 / 3 \times$	ave．
佐䅡				2131	Kav	ve.																						
福井			1															ave． 0	IJ	apa	an						of Jap	an
徳句		1		015	apa	an												425，8	5）								（567，8	8）
	50，000			$\begin{array}{r} (283, \\ 300, \end{array}$,900				350，	，000				00，0	00			450，	，000				500	，000			550，	，000

Proposal

But, too many to solve!
\pm prefecture \rightarrow regional system
(an idea by Local Government System ResearchóCouncil)

area name	population	seat
1 Hokkaido	$5,627,424$	13.21
2 Tohoku	$9,634,466$	22.62
3 N.Kanto/Shinetsu	$11,642,927$	27.34
4 M.Kanto	$35,356,183$	83.0
5 Chubu	$17,306,944$	2.64
6 Kansai	$21,714,274$	50.9
7 Chugoku/Shikoku	$11,761,745$	27.62
8 Kyushu	$13,352,022$	31.35
9 Okinawa	$1,360,830$	3.20

$\rightarrow \mathbf{1 . 1 2 3}$ [lower bound]

Proposal

ultimate apportion method to minimize disparity (2004)

 several apportioned possibility modeled as Knapsack type problem

ultimate apportion method to minimize disparity

$$
\begin{aligned}
& \text { ex) Tokyo-to } \\
& 1+24.039,1+\mathbf{L D}, 1+\mathbf{S D}, 1+\mathbf{A M D}, 1+\mathbf{G M D}, 1+\mathbf{H M D}
\end{aligned}
$$

$\rightarrow 1+24=\mathbf{2 5}, 1+25=\mathbf{2 6}, 1+26=\mathbf{2 7}, 1+22=\mathbf{2 3}, 1+24=\mathbf{2 5}, 1+24=\mathbf{2 5}, 1+23=\mathbf{2 4}$
\rightarrow We solve the districting prob. for $23,24,25,26$, or 27 seats
\rightarrow

	seats	opt. upper	opt. lower
Tokyo	23	574,244	499,178
Tokyo	24	540,722	446,698
Tokyo	25	536,000	421,504
Tokyo	26	536,000	394,703
Tokyo	27	536,000	376,789

limit!

1.722
(pop. census 2000)

Proposal

${ }^{+}$Solve the Knapsack-type Problem.

$$
\begin{aligned}
& \text { min. } u / l{ }_{j \in J} u_{i j} x_{i j} \leq u(i \in\{1, \ldots, 47\}) \\
& \sum_{j \in J} l_{i j} x_{i j} \geq l \quad(i \in\{1, \ldots, 47\}) \\
& \text { the largest population on opt. sol. } \\
& \text { for each apportioned seat } \\
& \text { the smallest population on opt. sol. } \\
& \text { for each apportioned seat } \\
& \sum_{j \in J} x_{i j}=1 \quad(i \in\{1, \ldots, 47\}) \\
& \begin{array}{l}
\sum_{\substack{i \in\{1, \ldots, 47\}}} \sum_{j \in J} \gamma_{i j} \gamma_{i j}=D \text { the number of seats } \\
x_{i j} \in\{0,1\}(i \in\{1, \ldots, 47\}, j \in J)
\end{array}
\end{aligned}
$$

Conclusions

1. We proposed the 300 optimal districts for the first time in Japan. The limit is 1.977 . Consequently, we offered an index of gerrymandering.
2. We derived the ratios for each prob. apportioned by several methods. The minimum limit is $\mathbf{1 . 7 5 0}$.
3. We proposed a new framework with the Knapsack type prob. The limit is $\mathbf{1 . 7 5 0}$. We also proposed a new framework with the Knapsack type prob. called the ultimate apportion method to minimize disparity. The limit is $\mathbf{1 . 7 2 2}$.
4. We derived the ratios for each prob. with $280 \sim 320$ members and by several apportioned methods.
The minimum limit is $\mathbf{1 . 7 0 4}$
5. We show the limit 2.153 in 2006 map.

Future works

- A main cause of the disparity is

\checkmark Districting phase	No!
$\checkmark+1$ seat rule	No!
\checkmark Apportion methods	No!
\checkmark Decision process	No!
\checkmark The number of seats	No!

Relax prefectural boundary restriction?
faster methods for bigger problems

Thank you!

Graph Partition type

Graph Partition type

[^0]: Informs2007

