

Linear Programming I

線形計画の解を導く素朴な方法達

線形計画とは

(Linear Programming)

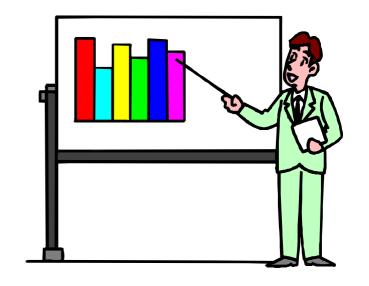
省略して「LP」と呼ぶ

・数理計画の中で基礎的な問題

目的関数:線形

制約式:すべて線形

数理計画全般に影響する興味深い性質が得られる



線形計画に対する解法

- グラフ解法
 - − 2(~3)変数の問題に図を用いて解を導く.
- 総当たり法
 - シンプレックス法の基礎
- シンプレックス法(Simplex method)
 - 変数が多くなっても適用できる.
- 内点法(Interior point method)
 - 特に大規模な問題を解くときに良い

例題1 生產計画

- ・ 文教工業が2つの製品P,Qを売り出した。
- 二つの製品とも原料A,Bから生産される.
- 利益が最大になる一日の生産量は?

	製品P	製品Q	使用可能量/日
原料A	3	1	45
原料B	1	2	40
利益(千円)	6	5	

例題1(続) グラフを用いた解法

例題1を解いてみよう.

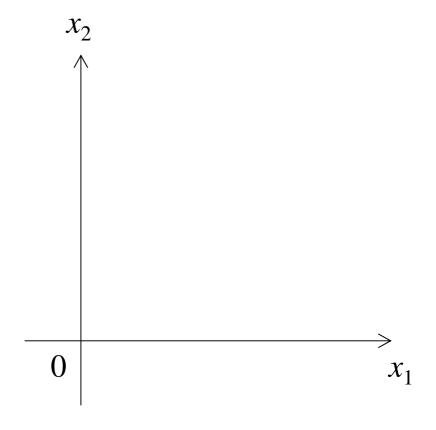
例題1を定式化

x₁:製品Pの生産量

x2:製品Qの生産量

max.
$$z=6x_1+5x_2$$

s.t. $3x_1+x_2$ 45
 x_1+2x_2 40
 x_1,x_2 0



作業1:制約式を x_1 - x_2 平面に図示せよ.

不等式と領域

(0,45)

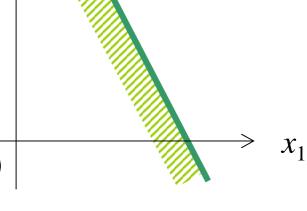
 $3x_1 + x_2$ 45 の示す領域の描き方

$$3x_1 + x_2 = 45$$
の直線を描く

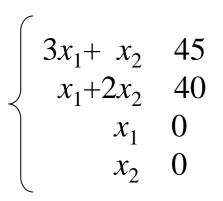
- ・直線が通る一点を見つける
- その点から法線ベクトルを描く
- ・ 法線ベクトルに直交し直線を描く

の時:法線ベクトルの向きが領域の時:法線ベクトルと逆向きが領域

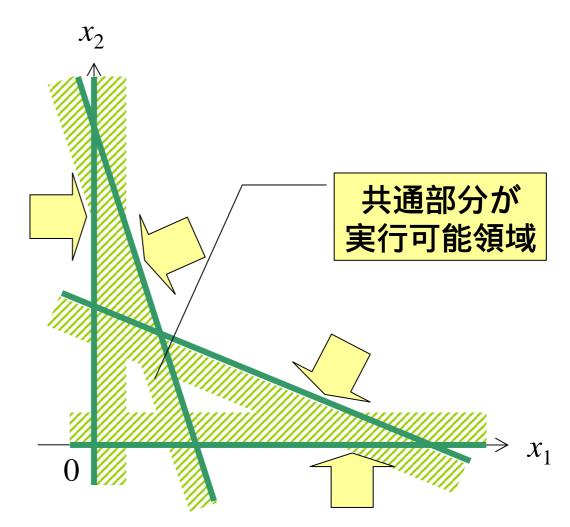
法線ベクトル
(3,1)
1



実行可能領域の図示



実行可能領域は これらの不等式を 全て満たす点の集合



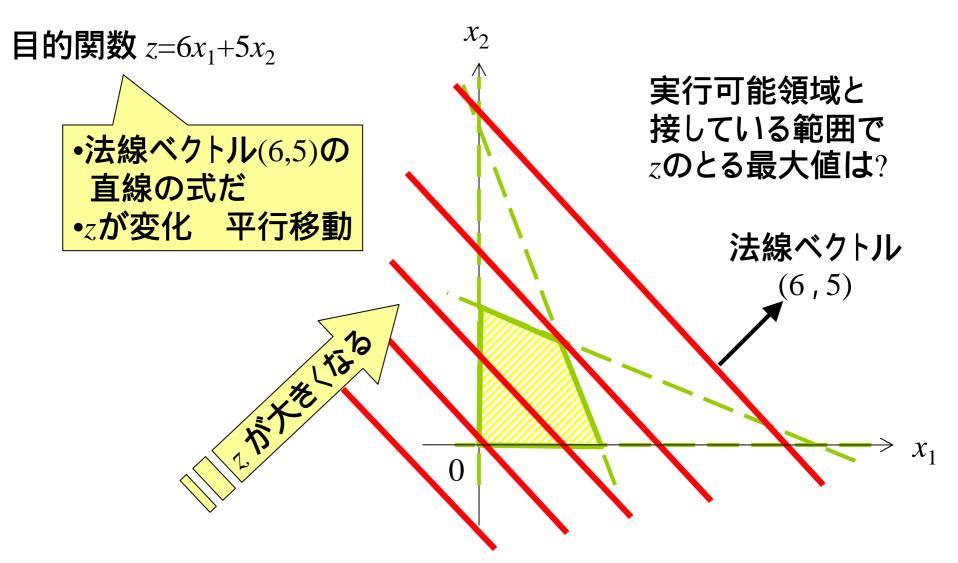
実行可能領域の特徴

$$\begin{cases} 3x_1 + x_2 & 45 \\ x_1 + 2x_2 & 40 \\ x_1 & 0 \\ x_2 & 0 \end{cases}$$

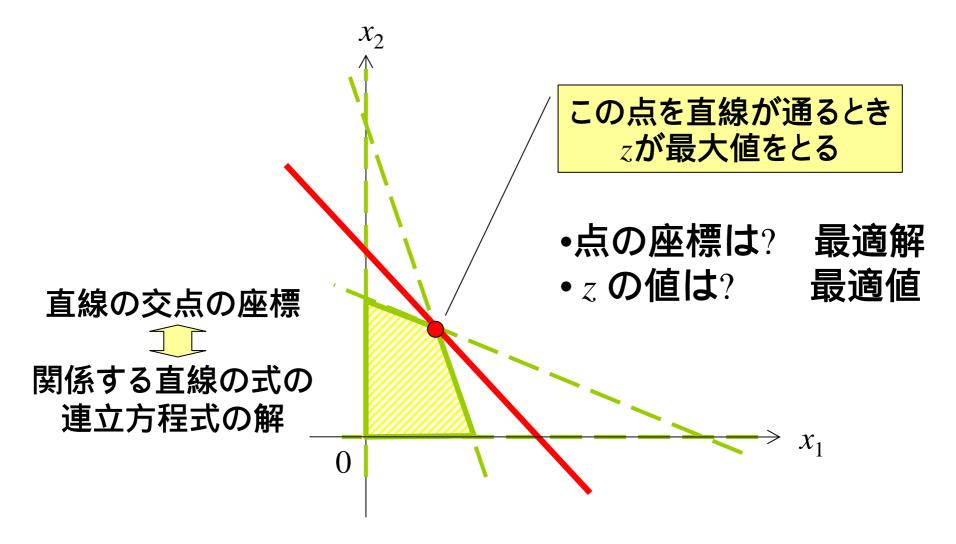
実行可能領域 変数が2つの時 は直線で囲まれ た領域になる 3変数の 時は? 端点 (extreme point)

与えられた制約の 実行可能領域には 端点はた〈さん存在する

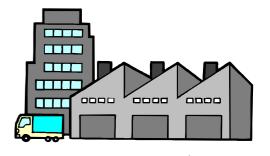
目的関数を動かす



最適値・最適解を見つける



演習1 生產計画(2)



文教工業では,3種類の原料M1,M2,M3を 用いて,二つの製品A,Bを製造している.

	A	В	利用可能量		
M 1	1 5	1 1	1 6 5 0		
M 2	1 0	1 4	1 4 0 0		
M 3	9	2 0	1 8 0 0		
利益	5万円	4万円			
(1単位当たり)					

利益が最大になる製品AとBの生産量を求めたい、 最適解と最適値を求めてみよう、

復習:連立方程式を解く

実行可能領域の端点を求める

П

連立方程式を解く

計算機向きの うまい解き方があるんだよな. 高校までは習わないけど...

(復習) ガウスの消去法

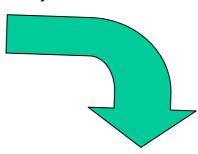
図を用いる解法の欠点

- 2変数(または訓練すれば3変数)の線形計画問題にしか適応できない.
 - 現実的に解きたい問題の中には,100~数万 変数の問題が多い.
- ・計算機で実行しにくい.解の導出時間が長い.

図を用いない解法を考えよう!!

最適解はどんな性質を持つか?

• 最適解(の少なくとも一つ)は 実行可能領域の端点 に存在する.

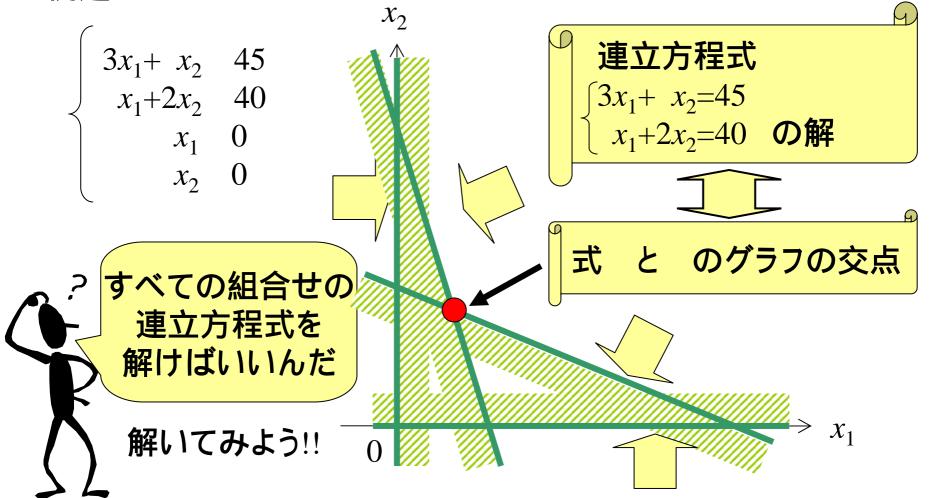


実行可能解の端点をすべて見出しその中から最適解を探そう!!

総当たり法

実行可能領域の端点と式の関係

例題1より



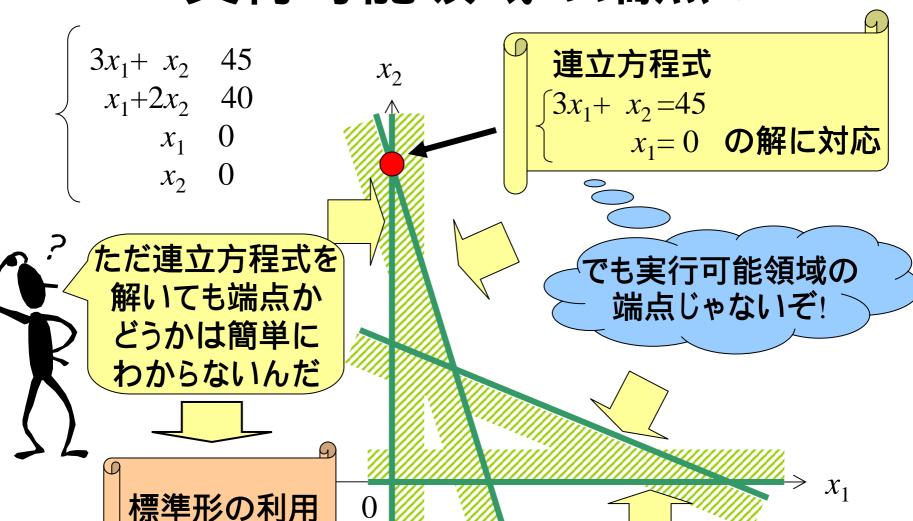
演習2 例題1のすべての交点を探そう

すべての組合せの連立方程式とその解

式の組合せ	x1の値	x2の値	実行可能解?	目的関数値
式と				

目的関数: $\max z = 6x_1 + 5x_2$

実行可能領域の端点?



線形計画問題の標準形とは

maximize
$$z = c_1 x_1 + \dots + c_n x_n$$

subject to $a_{11}x_1 + \dots + a_{1n}x_n = b_1$
 \vdots
 $a_{m1}x_1 + \dots + a_{mn}x_n = b_m$
 $x_1, \dots, x_n \ge 0$

標準形(standard form)

- •目的関数は最大化
- 条件式は非負条件以外は 等式で表現
- •条件式の右辺 (b_i) は 非負
- •すべての変数が非負

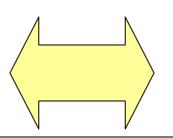
標準形の例

標準形で表現された制約式

標準形ではない 表現の制約式

$$3x_1 + x_2 + s_1 = 45$$

 $x_1 + 2x_2 + s_2 = 40$
 $x_1, x_2, s_1, s_2 = 0$



$$3x_1 + x_2 45$$

 $x_1 + 2x_2 40$
 $x_1, x_2 0$

表現している内容は同じ!! 異なるのは,見た目だけ

すべてのLPは標準形で表現できる

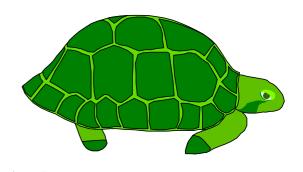
- 不等条件式が含まれている時
 - 左辺に非負のスラック変数を付加し等式化
- 非負条件のない変数が含まれる時
 - 正と負の部分に分けて2変数に置き換える

元の問題: xに非負制約無し(自由変数)

$$\downarrow \downarrow$$

$$x^+ - x^-, \quad x^+ \ge 0, x^- \ge 0$$

目的関数の変形



- 目的関数を最大化問題に変形する
 - 最小化したい目的関数に(1)を掛ける 最大化問題になる.

minimize
$$z = f(x)$$

$$\updownarrow$$
maximize $-z = -f(x)$

標準形への変形例(1)

一般形

 $\max z = 20x_1 + 30x_2$

s.t.
$$x_1 + 2x_2 \le 800$$

$$-3x_1 - 4x_2 \ge -1800$$

$$3x_1 + x_2 \le 1500$$

$$x_1, x_2 \ge 0$$

正準形 max $z = 20x_1 + 30x_2$

s.t. $x_1 + 2x_2 \le 800$

 $3x_1 + 4x_2 \le 1800$

 $3x_1 + x_2 \le 1500$

 $x_1, x_2 \ge 0$

標準形

max $z = 20x_1 + 30x_2$

s.t. $x_1 + 2x_2 + s_1$ =800

 $3x_1 + 4x_2 + s_2 = 1800$

 $3x_1 + x_2 + s_3 = 1500$

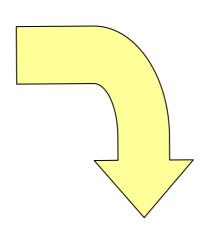
 $x_1, x_2, s_1, s_2, s_3 \ge 0$

スラック変数の導入

標準形への変形例(2)

minimize
$$z = 3x_1 - 5x_2$$

subject to $9x_1 - 4x_2 \ge -5$
 $-7x_1 + 5x_2 = 8$
 $6x_1 - 2x_2 \ge 1$
 $x_1 \ge 0$



maximize
$$-z = -3x_1 + 5(x_2^+ - x_2^-)$$

subject to $-9x_1 + 4(x_2^+ - x_2^-) + s_1 = 5$
 $-7x_1 + 5(x_2^+ - x_2^-) = 8$
 $6x_1 - 2(x_2^+ - x_2^-) - s_3 = 1$
 $x_1, x_2^+, x_2^-, s_1, s_3 \ge 0$

演習2標準形に変形せよ

minimize
$$z = 2x_1 - x_2$$

subject to $x_1 + x_2 \le 120$
 $x_1 \le 50$
 $x_2 \le 90$
 $x_1 + x_2 \ge 60$
 $x_2 \ge 0$

標準形の利用 実行可能領域の端点を見つける

その前にもう少し知識をためよう

- •独立变数
- •基本解
- •基底変数と非基底変数

連立方程式と解の関係

m変数,n本の方程式から成る連立方程式

- m=nの時:
 - 解が一意に定まる or 不定 or 不能(解なし)
- m<nの時:
 - 基本的にm=nの時と同じ.
- m>nの時:
 - m-n個の変数の解は一意に定めることができない(独立変数).

m-n個の独立変数の値を定めると,残った変数の方程式の解が定まる.

例えば...

以下の連立方程式の解は?

$$\begin{cases} x_1 + 2x_2 + s_1 &= 800 \\ 3x_1 + 4x_2 &+ s_2 &= 1800 \\ 3x_1 + x_2 &+ s_3 &= 1500 \end{cases}$$

変数の数:5個

方程式の数:3個

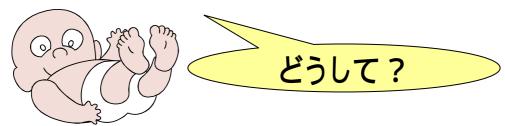
(5-3=)2個の独立変数に 値を与えれば解を持つ

例えば, x_1 , x_2 を独立変数に選び,値に0を与えてみよう.

連立方程式の解はどうなるだろうか?

実行可能領域の端点の見つけ方

- 制約条件式を標準形にする.
- ・連立方程式の解が定まるように独立変数 を適当に決めて、それらの値を0にする、 連立方程式の解が得られる、(基本解)
 - 実際に値を求める変数 = 基底変数 値が0に定められた変数 = 非基底変数
- ◆基本解が非負なら,実行可能領域の端点.



例題3

$$\begin{cases} x_1 + 2x_2 + s_1 &= 800 \\ 3x_1 + 4x_2 &+ s_2 &= 1800 \\ 3x_1 + x_2 &+ s_3 &= 1500 \end{cases}$$

- (1) すべての独立変数を選ぶパターンを書き出せ。
- (2) (独立変数に0を与えた場合の)基本解を求めよ。

例題3 すべての基本解

x1	x2	s1	s2	s3	端点?	目的関数値
0	0	800	1800	1500		0
0	400	0	200	1100		12000
200	300	0	0	600		13000
366.7	100	133.3	0	0		12333
500	0	300	300	0		10000
0	450	-100	0	1100	×	
0	1500	-2200	-4200	0	×	
440	180	0	-240	0	×	
800	0	0	-600	-900	×	
600	0	200	0	-300	×	

値が0になっている変数が選んだ独立変数.

演習3

max.
$$z=5x_A+4x_B$$

s.t. $15x_A+11x_B$ 1650
 $10x_A+14x_B$ 1400
 $9x_A+20x_B$ 1800
 x_A,x_B 0

独立変数の選び方の すべてのパターンの 基本解を求め, 最適解を見つけよう.

図を用いない素朴な解法 総当たり法

手順1標準形にする.

手順2 すべての基本解を導く.

手順3実行可能領域の端点かどうが調べる.

手順4 実行可能領域の端点である基本解の中で目的関数値を最大(最小)にする基本解を見出す. 最適解が見つかる

演習11 3 総当たり法で解いてみよう

総当たり法の欠点

- ・ 標準形がn個の変数とm本の等式条件の時
 - 基本解はどの〈らい存在するか?

膨大な数の連立方程式を解く. (変数の数が多くなったら事実上実行不可能)

• 実行可能領域の端点に関係ない基本解も計 算している.(無駄)

より無駄の無い解法 シンプレックス法

演習3解答例

x1	x2	s1	s2	s3	端点?	目的関数値
0	0	1600	1400	1800		0
0	150	0	-700	-1200	×	
77	45	0	0	207		565
1440/37	2700/37	10350/37	0	0		18000/37
200	0	-1350	-600	0	×	
0	100	550	0	-200	×	
0	90	140	660	0		360
65923/67	4050/67	0	-622130/67	0	×	
110	0	0	300	810		550
140	0	-450	0	540	×	

黄色のセル(値=0)が選ばれた独立変数.