よりスマートに感度分析をしよう

シンプレクス法で辿った経路の記憶と復元

基底行列の利用

復習

感度分析の概要

仮定

機械Aの使用可能時間を変えずに、 機械Bの使用可能時間を△増やした

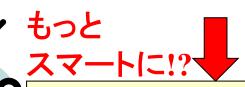
デルタ〜

微量変化を示す記号

知りたいこと

限界価値

最適値はどう変化する? その変化が有効な範囲は?


增加限界

max. z

s.t.
$$3x_1 + x_2 + s_1 = 45$$

 $x_1 + 2x_2 + s_2 = 40 + \Delta$
 $z - 6x_1 - 5x_2 = 0$
 $x_1, x_2, s_1, s_2 \ge 0$

最適解発見経路の追跡

		Z	$\begin{pmatrix} x_1 \end{pmatrix}$	x_2	s_1	s_2	定数項
1	s_1	0	3	1	1	0	45
2	s_2	0	1	2	0	1	$40+\Delta$
3	Z	1	-6	-5	0	0	0
1	x_1	0	1	1/3	1/3	0	15
2	$\overline{S_2}$	0	0	5/3	-1/3	1	$25+\Delta$
3	Z	1	0	-3	2	0	90
	x_1	0	1	0	2/5	-1/5	10-1/5Δ
	x_2	0	0	1	-1/5	3/5	15+3/5Δ
	Z	1	0	0	7/5	9/5	135+9/5Δ

最適解発見時の記録を利用

掃き出し操作記録

$$\begin{array}{c|cccc}
 & 1/3 \\
\hline
 & 2 & -1 \times 1/3 \\
\hline
 & 3 & -1 \times (-2)
\end{array}$$

$$\begin{array}{c}
1 - 2 \times 1/5 \\
2 \times 3/5 \\
3 - 2 \times (-9/5)
\end{array}$$

最適解を得て停止

最適解 $(x_1,x_2)=(10-1/5\Delta,15+3/5\Delta)$, 最適值 $135+9/5\Delta$

$$\begin{cases} 10 - 1/5\Delta \ge 0 \\ 15 + 3/5\Delta \ge 0 \end{cases}$$

辿った経路の記憶法

	基底	Z	x_1	x_2	\mathbf{s}_1	s_2	定数 項	増加 限界			
1	s_1	0	3	1	1	0	45	15	1	0	0
2	s_2	0	1	2	0	1	40	40	0	1	0
3	Z	1	-6	-5	0	0	0	_	0	0	1

$$(1) \times 1/3$$

$$2 - 1 \times 1/3$$

$$(3)$$
 $-(1)$ × (-2)

この情報で記憶可

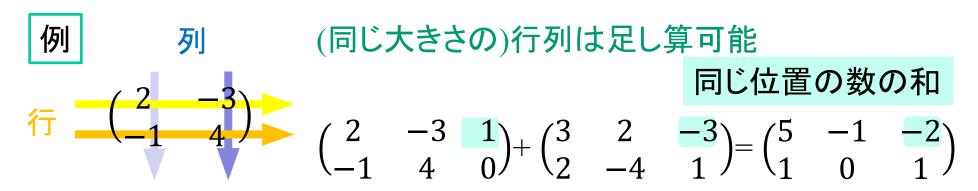
1	x_1	0	1	1/3	1/3	0	15	45	1/3	0	0
2	s_2	0	0	5/3	-1/3	1	25	10	-1/3	1	0
3	Z	1	0	-3	2	0	90		2	0	1

辿った経路の記憶法(2)

	基底	Z	x_1	x_2	\mathbf{s}_1	\mathbf{S}_2	定数項	増加 限界			
1	x_1	0	1	1/3	1/3	0	15	45	1/3	0	0
2	s_2	0	0	5/3	-1/3	1	25	10	-1/3	1	0
3	Z	1	0	-3	2	0	90		2	0	1

$$1 - 2 \times 1/5$$

$$2 \times 3/5$$


$$3 - 2 \times (-9/5)$$

掃き出しを記録

x_1	0	1	0	2/5	-1/5	10		2/5	-1/5	0
x_2	0	0	1	-1/5	3/5	15		-1/5	3/5	0
Z	1	0	0	7/5	9/5	135		7/5	9/5	1

復習 行列の積

行列:数などが矩形状に配列されたもの

(サイズが合えば)行列は掛け算可能

1列目 (行)×(列)の和
2行目
$$\begin{pmatrix} 2 & -3 & 1 \\ -1 & 4 & 0 \end{pmatrix}$$
 $\begin{pmatrix} 3 & 2 \\ 2 & -4 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 0 & 15 \\ 5 & -16 \end{pmatrix}$ 2行1列の値 $(-1) \times 3+4 \times 2+0 \times 0$

欲しい位置だけ計算可能

記憶の利用(1)

掃き出しの記録

初期のシンプレックス表

2/5	-1/5	0
-1/5	3/5	0
7/5	9/5	1

X

Z	x_1	x_2	s_1	s_2	定数項
0	3	1	1	0	45
0	1	2	0	1	40
1	-6	-5	0	0	0

$$= \begin{array}{|c|c|c|c|c|c|c|c|c|} \hline 0 & 1 & 0 & 2/5 & -1/5 & 10 \\ \hline 0 & 0 & 1 & -1/5 & 3/5 & 15 \\ \hline 1 & 0 & 0 & 7/5 & 9/5 & 135 \\ \hline \end{array}$$

最後のシンプレックス表

記憶の利用(2)

掃き出しの記録

初期のシンプレックス表

2/5	-1/5	0
-1/5	3/5	0
7/5	9/5	1

X

Z	x_1	x_2	\mathbf{s}_1	\mathbf{s}_2	定数項
0	3	1	1	0	45+∆
0	1	2	0	1	40
1	-6	-5	0	0	0

最後のシンプレックス表

記憶の利用(3)

掃き出しの記録

初期のシンプレックス表

2/5	-1/5	0
-1/5	3/5	0
7/5	9/5	1

X

Z	x_1	x_2	\mathbf{s}_1	s_2	定数項
0	3	1	1	0	45
0	1	2	0	1	40
1	-6	-5-∆	0	0	0

	0	1	0	2/5	-1/5	10
=	0	0	1	-1/5	3/5	15
	1	0	-Δ	7/5	9/5	135

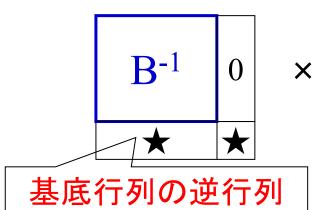
最後のシンプレックス表

記憶の利用(4)

最後のシンプレックス表

基底の 役割の 明確化

0	1	0	2/5	-1/5	10
0	0	1	-1/5	3/5	15
1	0	0	7/5-1/5∆	9/5+3/5Δ	135+15Δ


||∨OO

基底行列と逆行列

基底変数

掃き出しの記録

初期のシンプレックス表

		人外人		
В	N	b		
c_{B}	$c_{ m N}$	0		

非基底変数

定数項

E	B-1N	B-1b
$c_{ m B}$	c_{N}	0

E	$B^{-1}N$	B-1b	
0	c_N - c_B B-1 N	$-c_BB^{-1}b$	

ここでのまとめ

- 感度分析をスマートに実行するコツ
 - シンプレクス法の過程を記録(逆行列)
 - 逆行列を利用し欲しい部分だけ再現

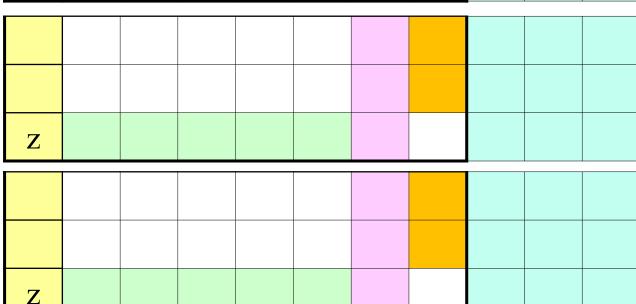
シンプレクス法で辿った経路の 記憶法

逆行列とその利用のトレーニング

練習1(1)最適解と最適値を導け

max.
$$z=30x_1+20x_2$$

s.t. $x_1+3x_2 \le 150$
 $2x_1+x_2 \le 160$
 $x_1,x_2 \ge 0$


①標準形に変形

② シンプレクス表(拡張版)の準備

基底	Z	x_1	x_2	\mathbf{s}_1	s_2	定数項	増加 限界	↓記憶部		FIS.
Z										

③ シンプレクス法の実行

④ 最適解・最適値の提示

練習1(2)「150」の感度分析(限界価値と増加限界を求めよ)

max.
$$z=30x_1+20x_2$$

s.t. $x_1+3x_2 \le 150+\Delta$
 $2x_1+x_2 \le 160$
 $x_1,x_2 \ge 0$

↓最初のシンプレクス表

① 準備

記憶(进 行列 <i>)</i>								

X

基底 定数項 Z x_2 S_1 S_2 x_1 $150+\Delta$ S_1 160 S_2 0 \mathbf{Z}

② 必要部分で 行列の積を計算

③ 増加限界: 基底 定数項 x_2 S_1 S_2 Z χ_1 Z 4 限界価値

非負性から

△範囲計算

感度分析の結果

限界価値:

增加限界:

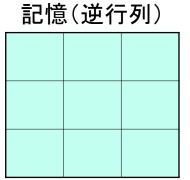
練習1(3)「160」の感度分析(限界価値と増加限界を求めよ)

Z

 x_1

max.
$$z=30x_1+20x_2$$

s.t. $x_1+3x_2 \le 150$
 $2x_1+x_2 \le 160+\Delta$
 $x_1,x_2 \ge 0$


↓最初のシンプレクス表

 S_1

 S_2

 x_2

① 準備

X

基底

 S_1

 S_2

② 必要部分で 行列の積を計算

Z							
							③ 増加限界:
基底	Z	$ \chi_1 $	$ x_2 $	S_1	$ $ S_2	定数項	非負性から
		1	2	- I	- 2		→ △範囲計算
							1

④ 限界価値

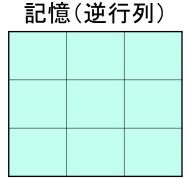
定数項

非負性から

△範囲計算

感度分析の結果

限界価値:


增加限界:

練習1(4)「30」の感度分析(費用の感度分析)

max.
$$z=(30+\Delta)x_1+20x_2$$

s.t. $x_1+3x_2 \le 150$
 $2x_1+x_2 \le 160$
 $x_1,x_2 \ge 0$

↓最初のシンプレクス表

① 準備

X

② 必要部分で 行列の積を計算

至心	Z	x_1	x_2	\mathbf{s}_1	S_2	
\mathbf{s}_1						
s_2						
Z	1	-30-Δ	-20	0	0	0
\overline{z}						

宁数百

③ Z行で基底の役割の明確化

 \mathbf{Z}

感度分析の結果

最適解が変化しない△の範囲:

④ 非負性から△範囲計算

練習1(5)「20」の感度分析(費用の感度分析)

基底

 \mathbf{S}_1

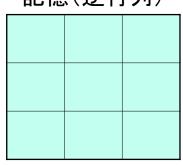
 S_2

 \mathbf{Z}

Z

 \mathbf{Z}

Z


 x_1

-30

max.
$$z=30x_1+(20+\Delta)x_2$$

s.t. $x_1+3x_2 \le 150$
 $2x_1+x_2 \le 160$
 $x_1,x_2 \ge 0$

① 準備

記憶(逆行列)

② 必要部分で 行列の積を計算 X

▼ ③ Z行で基底の役割の明確化

↓最初のシンプレクス表

 χ_2

 $-20-\Delta$

 S_1

 $\mathbf{0}$

 S_2

0

定数項

 $\mathbf{0}$

⑤ 感度分析の結果

最適解が変化しない△の範囲:

④ 非負性から△範囲計算