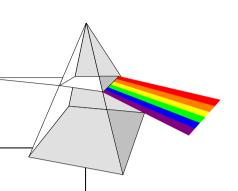
シンプレックス法 (単体法)(simplex method)

線形計画問題を解く手法の1つであるシンプレックス法の基本的な流れを解説する.シンプレックス法という解法のアルゴリズムは以下のように記述できるが,以下の記述をいきなり読むのも近寄りにくいので,さっと一読してから,その下の例題に取り組んでみよう.



シンプレックス法を適用するための準備

その1 与えられた線形計画問題を標準形に変形する.

標準形:制約式はすべて等式表現+制約式の右辺はすべて非負+全変数に非負制約+最大化問題.

その2 目的関数を z の最大化の形にする.

(準備終了)

シンプレックス法の手順

ステップ1.初期設定

ステップ11.シンプレックス表を作成する.

ステップ12. 基底変数を式の数だけ定める. ただし, z は必ず基底変数に選ぶ.

ステップ2. 現在の基底変数から得られた連立方程式の解が最適かどうか吟味する.

最適ならば終了.最適でない時はステップ3へすすむ.

ステップ3. より良い目的関数値を持つ解を見つけるように基底変数と非基底変数の組合せを変更する.

ステップ31.新たに基底変数に仲間入りさせるべき変数を非基底変数の中から選ぶ.

ステップ32. 基底から追い出す変数の決定.

ステップ33.新しい基底変数での連立方程式を解く、解を得られた後,ステップ2に戻る/

例題

次の線形計画問題を解きなさい .
$$\max \ z = 20x_1 + 30x_2$$
 s.t. $x_1 + 2x_2 \le 800$ $3x_1 + 4x_2 \le 1800$ $3x_1 + x_2 \le 1500$ $x_1, x_2 \ge 0$

シンプレックス法を適用するための準備

準備 その1 与えられた線形計画問題を標準形に変形する. **その2** 目的関数を z の最大化の形にする.

準備その1.標準形への変形

$$\max z = 20x_1 + 30x_2$$
s.t.
$$x_1 + 2x_2 + s_1 = 800$$

$$3x_1 + 4x_2 + s_2 = 1800$$

$$3x_1 + x_2 + s_3 = 1500$$

$$x_1, x_2, s_1, s_2, s_3 \ge 0$$

準備その2.目的関数をzの最大化の形に変形する.

max z
s.t.
$$x_1 + 2x_2 + s_1 = 800$$

 $3x_1 + 4x_2 + s_2 = 1800$
 $3x_1 + x_2 + s_3 = 1500$
 $z - 20x_1 - 30x_2 = 0$
 $x_1, x_2, s_1, s_2, s_3 \ge 0$

シンプレックス法の手順

ステップ11.シンプレックス表を作成する.

(以下参照;準備で得られた線形計画問題の係数を表にまとめたもの.)

基底変数	Z	x1	x2	s1	s2	s3	定数項	増加限界
	0	1	2	1	0	0	800	
	0	3	4	0	1	0	1800	
	0	3	1	0	0	1	1500	
	1	-20	-30	0	0	0	0	

ステップ12. 基底変数を式の数だけ定める. ただし, z は必ず基底変数に選ぶ.

(この後に連立方程式を解かなくてはならないので,

なるべく連立方程式の計算が楽になるような基底変数を定める.)

基底変数	Z	x 1	x2	s1	s2	s3	定数項	増加限界
s1	0	1	2	1	0	0	800	
s2	0	3	4	0	1	0	1800	
s3	0	3	1	0	0	1	1500	
Z	1	-20	-30	0	0	0	0	

左側のシンプレックス表が表現している 線形計画問題の形.

max z

s.t.
$$x_1 + 2x_2 + s_1 = 800$$
$$3x_1 + 4x_2 + s_2 = 1800$$
$$3x_1 + x_2 + s_3 = 1500$$
$$z - 20x_1 - 30x_2 = 0$$
$$x_1, x_2, s_1, s_2, s_3 \ge 0$$

z,s1,s2,s3 を基底変数 (x1,x2 を非基底変数) に選んだ時の連立方程式.

$$0 + 2 \cdot 0 + s_1 = 800$$

 $3 \cdot 0 + 4 \cdot 0 + s_2 = 1800$
 $3 \cdot 0 + 1 \cdot 0 + s_3 = 1500$
 $z - 20 \cdot 0 - 30 \cdot 0 = 0$

解説: z,s1,s2,s3 を基底変数に選ぶことにより容易に得られた連立方程式の解 (z,x1,x2,s1,s2,s3)=(0,0,0,800,1800,1500)は,すべての値が非負なので,線形計画問題の実行可能領域における端点の一つに対応する.つまり, (x1,x2)=(0,0)は実行可能領域の端点で,その時,目的関数値z=0であることがシンプレックス表からわかる.

ステップ2. 現在の基底変数から得られた連立方程式の解が最適かどうか吟味する.

現在非基底変数になっている変数の中で、値を 0 から正の数に増加させた場合に ,目的関数値を増加できるような変数が存在したら現在得られている解は最適ではない (スッテプ 3 へ進む) .もしも , そのような変数がなければ ,現在の解が最適解で , z の値が最適値である (最適解が得られたので**終了**) .

現在の解が最適かどうかを簡単に判別する方法:

シンプレックス表の一番下の行(z が基底変数になっている行)を見る.この行の値がすべて正ならば,現在の解が最適解である.もしも, 負の値が存在すれば,それが存在する列の変数を0から正の数に増加させることにより,現在より大きな目的関数値を得ることができる.

基底変数	Z	x 1	x2	s1	s2	s3	定数項	増加限界
s1	0	1	2	1	0	0	800	
s2	0	3	4	0	1	0	1800	
s3	0	3	1	0	0	1	1500	
Z	1	-20	-30	0	0	0	0	

一番下の行を見ると×1,×2の列に負の値がある.よって,現在得られている解は最適ではない.

注意(陽関数と陰関数):陽関数 陰関数

$$z = 20x_1 + 30x_2$$
 $z - 20x_1 - 30x_2 = 0$

表現が異なるだけ、シンプレックス法では目的関数を陰関数で扱っている。

ステップ3 より良い目的関数値を持つ解を見つけるように基底変数と非基底変数の組合せを変更する. (実行可能領域の別な端点を探索する.)

ステップ31.新たに基底変数に仲間入りさせるべき変数を非基底変数の中から選ぶ. 候補となる変数が複数存在する場合は、最も効果の高い変数を基底に選ぶ.

新たに基底に入れる変数の簡単な選び方:

一番下の行(z の行)で最も小さい負の値を持つ列に対応する非基底変数を新たに基底に入れる変数に選ぶ.

基底変数	Z	x 1	x2	s1	s2	s3	定数項	増加限界
s1	0	1	2	1	0	0	800	
s2	0	3	4	0	1	0	1800	
s3	0	3	1	0	0	1	1500	
Z	1	-20	-30	0	0	0	0	

解説: 仮に現在 0 である x1 を 1 つ増やせば目的関数値を 20 増やすことができ, x2 を一つ増やせば目的関数値を 30 増やすことができる.どちらを増やしても (新たに基底変数に選んでも)目的関数値を増加できる.ここでは貪欲に単位当たりの増加量が大きい x2 を新たに基底に入れる変数として選択することにする.(この戦略は必ずしも優れていないが(どうしてだろう?),簡単な点が良いところである)

ステップ32. 基底から追い出す変数の決定.

ステップ 3 1 で新たに基底に入れるべき変数を決定したが,基底変数の数は決まっているので(この例題では3つ),現在の基底の中から追い出す(非基底変数にする)変数を1つ決めなくてはならない.ただし,新たな基底変数の組合せが実行可能領域の端点に対応するように選ばなくてはならない.

基底から追い出す変数の簡単な決め方:

一番下の行(zの行)を除き各行において(定数項の値)÷(新たに基底に入れることになった変数の係数)を計算する. その値を**増加限界**と呼ぶ、各行の増加限界の中から非負で最小の値を取った行に対応する変数を追い出す変数に決める.

基底変数	Z	x 1	x2	s 1	s2	s3	定数項	増加限界
s1	0	1	2	1	0	0	800	400
s2	0	3	4	0	1	0	1800	450
s3	0	3	1	0	0	1	1500	1500
Z	1	-20	-30	0	0	0	0	

解説 (増加限界の意味):

x2 の代わりに現在基底変数になっている s1,s2,s3 のいずれかの変数を非基底変数にしなくてはならない(z はいつでも基底変数になる. なぜか?).増加限界はx2 の代わりに各基底変数を非基底変数に変更した場合に得られる連立方程式における各変数の解を示している(確認してみよう).この点に気づくと,増加限界が負の値を取る変数を非基底変数にすると,この後得られる解が実行可能解でなくなってしまうことがわかる.つまり,増加限界が負のものを非基底変数に選ぶことはできない.では,増加限界が正のものの中でどの変数を新たに非基底変数に選べば良いのだろうか.試しに,変数 s1 を非基底変数にすると実行可能領域の端点が得られる.ところが,変数 s2 または s3 を非基底変数にすると,ある変数の非負性が崩れてしまう(確かめてみよう!).つまり,増加限界が正であっても,いい加減に基底変数の組合せの変更を行うと実行可能領域の端点をうまく見つけることができなくなる.このような不都合が起きないようにするには,新たに非基底変数になった変数の値が 0 からなるべく急激に増加しないように選べばよいことが計算するとわかる(やってみよう!).つまり,増加限界の値が非負で,かつ,最も小さい変数を新たに非基底変数にすると新たな実行可能な基底変数の組合せが得られる.

ステップ33.新しい基底変数での連立方程式を解く、実行後はステップ2に戻る.

簡単な新しい基底での連立方程式の解き方:

- (1)新たに基底に加える変数の列と基底から追い出す変数の行との交点の係数をピボットにする.
- (2)ピボットを中心に掃き出しを行う.
- (1) ピボットが1になるように,ピボットのある行のすべての数字をピボットの数字で割る.

基底変数	Z	x 1	x2	s1	s2	s3	定数項	増加限界
s1	0	0.5	1	0.5	0	0	400	
s2	0	3	4	0	1	0	1800	
s3	0	3	1	0	0	1	1500	
Z	1	-20	-30	0	0	0	0	

(ピボット行) ÷ 2

(2) 各行からピボットの行を何倍かして引くことにより、ピボット列の数字がピボット以外0になるようにする.

基底変数	Z	x 1	x2	s1	s2	s3	定数項 増加限界	
x2	0	0.5	1	0.5	0	0	400	
s2	0	1	0	-2	1	0	200	【(2行目) - (ピボット行) × 4
s3	0	2.5	0	-0.5	0	1	1100	̄(3行目) - (ピボット行) × 1
Z	1	-5	0	15	0	0	12000	_(4行目) - (ピボット行) × (-30)

z,x2,s2,s3 を基底変数 (x1,s1 を非基底変数) に選んだ時の連立方程式.

$$0.5 0 + x_2 + 0.50 = 400$$

$$10 - 2 0 + s_2 = 200$$

$$2.5 0 - 0.5 0 + s_3 = 1500$$

$$z - 5 0 - 15 0 = 12000$$

解説:掃き出しにより, z,x2,s2,s3 を基底変数に選んだ場合の連立方程式の解 (z,x1,x2,s1,s2,s3)=(12000,0,400,0,200,1100)は容易に得られる.また,解は非負なので実行可能領域の端点に対応している.つまり, (x1,x2)=(0,400)は実行可能領域の端点であり,その時の目的関数値は 12000 となる.

ステップ2. 現在の基底変数から得られた連立方程式の解が最適かどうか吟味する.

基底変数	Z	x 1	x2	s1	s2	s3	定数項	増加限界
x2	0	0.5	1	0.5	0	0	400	
s2	0	1	0	-2	1	0	200	
s3	0	2.5	0	-0.5	0	1	1100	
Z	1	-5	0	15	0	0	12000	

ステップ3 より良い目的関数値を持つ解を見つけるように基底変数と非基底変数の組合せを変更する. (実行可能領域の別な端点を探索する.)

ステップ31.新たに基底変数に仲間入りさせるべき変数を非基底変数の中から選ぶ. 候補となる変数が複数存在する場合は、最も効果の高い変数を基底に選ぶ.

基底変数	Z	x 1	x2	s1	s2	s3	定数項	増加限界
x2	0	0.5	1	0.5	0	0	400	
s2	0	1	0	-2	1	0	200	
s3	0	2.5	0	-0.5	0	1	1100	
Z	1	-5	0	15	0	0	12000	

仮に現在0であるx1を1つ増やせば目的関数値を5増やすことができるので新たに基底に入れる変数とする...

ステップ32. 基底から追い出す変数の決定.

基底変数	Z	x1	x2	s1	s2	s3	定数項	増加限界
x2	0	0.5	1	0.5	0	0	400	800
s2	0	1	0	-2	1	0	200	200
s3	0	2.5	0	-0.5	0	1	1100	440
Z	1	-5	0	15	0	0	12000	

増加限界を計算し,最も小さい値となったs2を追い出す変数に決める.

ステップ33.基底の変更を実行する.実行後はステップ2に戻る.

(1)

基底変数	Z	x 1	x2	s1	s2	s3	定数項	増加限界
x2	0	0.5	1	0.5	0	0	400	
s2	0	1	0	-2	1	0	200	
s3	0	2.5	0	-0.5	0	1	1100	
Z	1	-5	0	15	0	0	12000	

(ピボット行) ÷ 1

z

(2)

基底変数	Z	x 1	x2	s1	s2	s3	定数項	増加限界	
x2	0	0	1	1.5	-0.5	0	300		(1行目) - (ピボット行) × 0.5
x1	0	1	0	-2	1	0	200		
s3	0	0	0	4.5	-2.5	1	600		(3行目) - (ピボット行) × 2.5
Z	1	0	0	5	5	0	13000		(4行目) - (ピボット行) × (-5)

z,x2,x1,s3 を基底変数 (s1,s2 を非基底変数) に選んだ時の連立方程式.

$$x_{1} + 1.50 - 0.50 = 300$$

$$x_{1} - 20 + 10 = 200$$

$$-4.50 - 2.50 + s_{3} = 600$$

$$+50 + 50 = 13000$$

掃き出しにより, z,x1,x2,s3 を基底変数に選んだ場合の連立方程式の解 (z,x1,x2,s1,s2,s3)=(13000,200,300,0,0,600)は容易に得られる.また, 解は非負なので実行可能領域の端点に対応している.つまり,(x1,x2)=(200,300)は実行可能領域の端点であり,その時の目的関数値は 13000 となる.

ステップ2. 現在の基底変数から得られた連立方程式の解が最適かどうか吟味する.

基底変数	Z	x 1	x2	s 1	s2	s3	定数項	増加限界
x2	0	0	1	1.5	-0.5	0	300	
x1	0	1	0	-2	1	0	200	
s3	0	0	0	4.5	-2.5	1	600	
Z	1	0	0	5	5	0	13000	

一番下の行を見ると負の値はない.つまり,これ以上基底を変更してもより良い目的関数値は得られない.よって,現在得られている解が最適である.(**終了**)

注意:ここで紹介したシンプレックス法は基本的な流れを示したもので,これだけでは有限時間内に最適解が求まらない時がある.(どんな時だろう?).必ず有限時間に終了できる工夫はここでは触れていないが,とりあえずは基本をマスターしよう.

演習 以下の線形計画問題をシンプレックス法で解いてみよう.

(1)
$$\max z = 3x_1 + 4x_2$$
s.t.
$$x_1 + 2x_2 \le 6$$

$$x_1 + x_2 \le 4$$

$$x_1, x_2 \ge 0$$

シンプレックス法が使えるように式を変形して準備しよう.

シンプレックス表を数字で埋めていこう.

基底変数	Z	x 1	x2	s1	s2	定数項	増加限界

基底変数	Z	x 1	x2	s1	s2	定数項	増加限界

基底変数	Z	x 1	x2	s1	s2	定数項	増加限界

注意:用意された表が足りない時は自分で増やしてください、余る場合もあるかもしれません、

$$\max z = x_1 + 4x_2 + 6x_3$$
s.t.
$$x_1 + x_2 + x_3 \le 2$$

$$x_2 + x_3 \le 1$$

$$x_1, x_2, x_3 \ge 0$$

基底変数	Z	x1	x2	x 3	s 1	s2	定数項	増加限界
基底変数	Z	x1	x2	х3	s1	s2	定数項	増加限界
基底変数	Z	x1	x2	хЗ	s1	s2	定数項	増加限界
基底変数	Z	x1	x2	х3	s 1	s2	定数項	増加限界

(3) min
$$z = -3x_1 - 5x_2$$

s.t. $x_1 + 7x_2 \le 140$
 $-2x_1 - 4x_2 \ge -100$
 $3x_1 + 2x_2 \le 130$
 $x_1, x_2 \ge 0$

(4)

max
$$z = 6x_1 + 8x_2 + 10x_3$$

s.t. $x_1 + x_2 + x_3 \le 20$
 $3x_1 + 4x_2 + 6x_3 \le 100$
 $4x_1 + 5x_2 + 3x_3 \le 100$
 $x_1, x_2, x_3 \ge 0$

作成:根本 俊男

文教大学情報学部経営情報学科 253 - 8550 茅ヶ崎市行谷 1100

nemoto@shonan.bunkyo.ac.jp

http://www.bunkyo.ac.jp/~nemoto/

作成日: 1997年10月26日(初版)

1998年10月21日(第2版)

1999年9月22日(第3版)

1999年11月7日(第4版)

2001年5月10日(第5版)

無許可の無断配布や転載は固くお断りします.